• Title/Summary/Keyword: modified orthogonal frame

Search Result 4, Processing Time 0.016 seconds

TUBULAR SURFACES WITH MODIFIED ORTHOGONAL FRAME IN EUCLIDEAN 3-SPACE

  • Akyigit, Mahmut;Eren, Kemal;Kosal, Hidayet Huda
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.453-463
    • /
    • 2021
  • In this study, tubular surfaces that play an important role in technological designs in various branches are examined for the case of the base curve is not satisfying the fundamental theorem of the differential geometry. In order to give an alternative perspective to the researches on tubular surfaces, the modified orthogonal frame is used in this study. Firstly, the relationships between the Serret-Frenet frame and the modified orthogonal frame are summarized. Then the definitions of the tubular surfaces, some theorems, and results are given. Moreover, the fundamental forms, the mean curvature, and the Gaussian curvature of the tubular surface are calculated according to the modified orthogonal frame. Finally, the properties of parameter curves of the tubular surface with modified orthogonal frame are expressed and the tubular surface is drawn according to the Frenet frame and the modified orthogonal frame.

A WORK ON INEXTENSIBLE FLOWS OF SPACE CURVES WITH RESPECT TO A NEW ORTHOGONAL FRAME IN E3

  • Alperen Kizilay;Atakan Tugkan Yakut
    • Honam Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.668-677
    • /
    • 2023
  • In this study, we bring forth a new general formula for inextensible flows of Euclidean curves as regards modified orthogonal frame (MOF) in E3. For an inextensible curve flow, we provide the necessary and sufficient conditions, which are denoted by a partial differential equality containing the curvatures and torsion.

Multiple Transmit Focusing Method With Modified Orthogonal Golay Codes for Ultrasound Imaging (초음파 영상에서 변형된 직교 골레이 코드를 이용한 동시 다중 송신 집속 기법)

  • 김배형;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.217-231
    • /
    • 2003
  • Coded excitation with complementary Golay sequences is an effective means to increase the SNR and penetration of ultrasound imaging. in which the two complementary binary codes are transmitted successively along each scan-line, reducing the imaging frame rate by half. This method suffers from low frame rate particularly when multiple transmit focusing is employed, since the frame rate will be further reduced in proportion to the number of focal zones. In this paper. a new ultrasound imaging technique based on simultaneous multiple transmit focusing using modified orthogonal Golay codes is proposed to improve lateral resolution with no accompanying decrease in the imaging frame rate, in which a pair of orthogonal Golay codes focused at two different focal depths are transmitted simultaneously. On receive, these modified orthogonal Golay codes are separately compressed into two short pulses and individually focused. These two focused beams are combined to form a frame of image with improved lateral resolution. The Golay codes were modified to improve the transmit power efficiency (TPE) for practical imaging. Computer simulations and experimental results show that the proposed method improves significantly the lateral resolution and penetration of ultrasound imaging compared with the conventional method.

Ultrasound Imaging Based On Simultaneous Multiple Transmit Focusing Using Orthogonal Modified Golay Code (직교하는 변형된 골레이(Golay) 코드를 이용한 동시 다중 집속 기반의 초음파 영상 기법)

  • Kim, B.H.;Jeong, Y.K.;Song, T.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.187-190
    • /
    • 2001
  • A new ultrasound imaging technique based on simultaneous multiple transmit focusing using orthogonal modified Golay codes is presented. modified Golay codes are used to increase signal-to-noise-ratio(SNR) and maximize the transmit power efficiency(TPE). Conventional Golay codes consist of a pair of complementary codes with same length and can be compressed into a delta-like signal due to their complementary property. In the present work, two modified Golay codes focused at different depths are transmitted at the same time, which are mutually orthogonal. On receive, these orthogonal modified Golay codes are separately compressed into two short pulses and individually focused. These two focused beam are combined to form a frame of image with improved lateral resolution. Computer simulations are performed to verity the proposed method improves the lateral resolution of image compared with the conventional echo system.

  • PDF