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A WORK ON INEXTENSIBLE FLOWS OF SPACE CURVES

WITH RESPECT TO A NEW ORTHOGONAL FRAME IN E3

Alperen Kızılay∗ and Atakan Tuğkan Yakut

Abstract. In this study, we bring forth a new general formula for inex-

tensible flows of Euclidean curves as regards modified orthogonal frame

(MOF) in E3. For an inextensible curve flow, we provide the neces-
sary and sufficient conditions, which are denoted by a partial differential

equality containing the curvatures and torsion.

1. Introduction

The theory of curves has praxis in mathematics, engineering and physics
[5, 10]. Since space curves are one-dimensional manifolds, they are the simplest
and most basic structures of differential geometry. Studies on curves have
started about 400 years ago. The opinion of characterizing the curve with its
tangent belongs to Fermat [4]. Descartes first gave the definition of an algebraic
curve [6]. After Descartes, Euler gave the parametric definition of curves in
1748 [7]. Frenet and Serret were the first to consider the idea of characterizing
curves with tangent, principal normal and binormal vectors [8, 14].

Although a Frenet-Serret framework is central to curve characterization, it
has some shortcomings. Bishop described an alternative framework called a
new relative parallel framework (RPAF) adapted to the Frenet framework [2].
Frenet and Bishop frames give curves their unique properties such as curvature
κ and torsion τ , and these characteristics are invariant. Frenet-Serret formulas
are used to analyze the kinematic characteristics of a particle travelling along
a space curve in E3

1 . In summary, Frenet formulas characterize the curve by
defining derivatives of unit vectors derived as tangential, normal and binormal.

In summary, Frenet formulas make use of tangent, principal normal, and bi-
normal vectors of space curves, which are interconnected. In [13], Sasai finally
worked on an orthogonal frame and came up with a formulation corresponding
to the Frenet-Serret equation. The resulting frame was called the MOF. In

Received April 5, 2023. Accepted June 25, 2023.

2020 Mathematics Subject Classification. 53E10, 53Axx, 53A04.
Key words and phrases. inextensible flow, Frenet-Serret frame, modified orthogonal

frame, Euclidean 3-Space.

*Corresponding author



A work on new inextensible flows in E3 669

most studies, external factors were ignored while performing curve characteri-
zation. However, later research has revealed that these external factors play an
important role. One of these external factors is curve flow. If the arc-length of
a curve is conserved, the flow of the curve is named to be inelastic or inextensi-
ble. First, Kwon and Park investigated non-extensible curve flows in Euclidean
3-space E3 [11, 12]. After them, inextensible flows of curves are worked [1].

In our work, we introduce a standard formula for inextensible flows of space
curves relative to the MOF in E3. Our aim is to this study, expressing the
requisite and adequate conditions for an inextensible curve flow in the form of
a partial differential equation involving curvature and torsion.

2. Preliminaries

Initially, we will review the traditional fundamental definition and theorems
of space curves, which applies to space curves in E3. Assume that s is the arc-
length parameter and F is a curve of class C3. Furthermore, we consider
that curvature κ(s) not disappear anywhere. Thus an orthonormal frame{−→
t ,−→n ,

−→
b
}
exists that fulfills the Frenet-Serret equation

(1)


−→
t

′
= κ−→n

−→n ′
= −κ

−→
t + τ

−→
b

−→
b

′
= −τ−→n

where the vectors
−→
t , −→n and

−→
b denote the tangent, primary normal and bi-

normal unit vectors, respectively. And also κ and τ are curvature and torsion,
respectively. When we take two function κ of class C1 and continuous func-

tion τ , there is a curve of class that admits an orthonormal frame
{−→
t ,−→n ,

−→
b
}

satisfying (1) with provided and as its curvature κ and torsion τ , respectively.
A space curve can only be determined in one way in E3 [9].
Let the coordinates in Euclidean 3-space be Fi (i = 1, 2, 3). Assume that F (s)
is an analytical curve and that s spans a certain interval. We consider F to be
non-singular, i.e.

3∑
i=1

(
dFi

ds

)2

is not at all zero. As a result, F may be parametrized by its arc-length s.
Henceforth, we can just write F in the following form:

F = F (s) = (F1, F2, F3) , s ∈ I,
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where I is a open interval and F (s) is analytical in s . Let the curvature κ(s) of

F is differently zero.Thus we can give an MOF
{−→
T ,

−→
N,

−→
B
}

as noted below:

−→
T =

dF

ds
,
−→
N =

d
−→
T

ds
,
−→
B =

−→
T ×

−→
N,

where the vector
−→
T ×

−→
N are orthogonal both the vector

−→
T and the vector

−→
N .

Now we define the relationships between
{−→
T ,

−→
N,

−→
B
}
and given classic Frenet

frame
{−→
t ,−→n ,

−→
b
}
as follows;


−→
T =

−→
t

−→
N = κ−→n
−→
B = κ

−→
b

where κ ̸= 0. Hence, when κ(s0) = 0 and the length squares of
−→
N and

−→
B

vary analytically in s,
−→
N (s0) =

−→
B (s0) = 0 . According to MOF

{−→
T ,

−→
N,

−→
B
}
,

a elementary computation shows that the Frenet derivative formulas take the
next formula

(2)


−→
T

′

−→
N

′

−→
B

′

 =

 0 1 0

−κ2 κ
′

κ τ

0 −τ κ
′

κ

 .


−→
T
−→
N
−→
B

 ,

and

τ = τ(s) =
det (F ′, F ′′ F ′′′)

κ2
,

where τ is torsion of F . As we know from the classic Frenet-Serret equation,
an extractable singularity of τ is any zero point of κ2. In the usual situa-

tion, equation (2) relates to the Frenet-Serret equation [3]. Also,
{−→
T ,

−→
N,

−→
B
}

satisfies: 〈−→
T ,

−→
N
〉
=
〈−→
T ,

−→
B
〉
=
〈−→
N,

−→
B
〉
= 0.〈−→

T ,
−→
T
〉
= 1,

〈−→
N,

−→
N
〉
=
〈−→
B,

−→
B
〉
= κ2,

(3)

where ⟨, ⟩ stands for E3 is inner product. Let us emphasize here that the
values of κ2 and τ in (2) and (3) are analytical in s.
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3. Inextensible Flows of Curve in Modified Orthogonal Frame

Throughout of this work, unless indicated otherwise, we take the transfor-
mation F as follows;

F : [0, l]× [0, ω) → E3

(u, t) → F (u, t),

which is a family of one-parameter differentiable and regular curves in the
three-dimensional Euclidean space and where the beginning curve’s arc length
is l. Let u ∈ [0, l]. If the speed of curve F is expressed v =

∥∥∂F
∂u

∥∥. In this
instance, the arc-length of curve F denote as follows;

S(u) =

u∫
0

∥∥∥∥∂F∂u
∥∥∥∥ du =

u∫
0

vdu.

We can re-express the ∂
∂s operator according to the variable u as follows;

∂

∂s
=

1

v

∂

∂u
.

So, ds = vdu is the arclength parameter. The following form can be defined as
any flow of the curve F .

Definition 3.1. Flow of the curve F in E3 is given by

∂F

∂t
= f1

−→
T + f2

−→
N + f3

−→
B,

where
{−→
T ,

−→
N,

−→
B
}
is MOF and f1, f2, f3 are scalar velocity functions of the

curveF . The arc-length variation is given by

S(u) =

u∫
0

vdu.

The case of the curve not undergoing any compression or extension can be
represented in E3 by the situation;

u∫
0

S(u, t) =

u∫
0

∂v

∂s
du = 0, ∀u ∈ [0, l] .

Definition 3.2. F (u, t) is curve evolution and its flow ∂F
∂t on the MOF in

three-dimensional Euclidean space are considered inextensible if

∂

∂t

∥∥∥∥∂F∂u
∥∥∥∥ = 0.

We are currently looking into what conditions must exist for a flow to be
inextensible. We need the next theorem in this situation.
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Theorem 3.3. Let
{−→
T ,

−→
N,

−→
B
}

be a MOF and ∂F
∂t = f1

−→
T + f2

−→
N + f3

−→
B

be smooth flow of the curve F in 3-dimensional Euclidean space. The flow is
inextensible necessary and sufficient condition

∂f1
∂s

= f2κ
2.

Proof. We have
〈
∂F
∂u ,

∂F
∂u

〉
= v2. The operators ∂

∂u and ∂
∂t commute because

vary coordinates u and t are linear independent coordinates.Thus we get

2v
∂v

∂t
=

∂

∂t

〈
∂F

∂u
,
∂F

∂u

〉
= 2

〈
∂F

∂u
,
∂

∂u

(
∂F

∂t

)〉
= 2

〈
∂F

∂u
,
∂

∂u

(
f1
−→
T + f2

−→
N + f3

−→
B
)〉

= 2v

〈
−→
T ,

∂

∂u
(f1)

−→
T + vf1

−→
N

〉
+ 2v

〈
−→
T ,

∂

∂u
(f2)

−→
N + vf2(−κ2−→T +

κ
′

κ

−→
N + τ

−→
B )

〉

+ 2v

〈
−→
T ,

∂

∂u
(f3)

−→
B + vf3

(
−τ

−→
N +

κ
′

κ

−→
B

)〉

= 2v

(
∂

∂u
(f1)− κ2f2v

)
.

Thus we get

(4)
∂v

∂t
= 2v

(
∂

∂u
(f1)− κ2f2v

)
.

Now let ∂F
∂t be extensible. From eq.(4) we find

∂

∂t
S(u, t) =

u∫
0

∂v

∂t
du =

u∫
0

(
∂

∂u
(f1)− κ2f2v

)
du = 0

for all u ∈ [0, l] . This come to mean that ∂
∂u (f1) = κ2f2v . In other words

∂
∂s (f1) = κ2f2. To complete the proof, the argument can be inverted to demon-
strate sufficiency.

We constrain the parameterized arc length curve. Namely, If we take v = 1
and the local coordinate u subtend to the curve arc-length s.

Theorem 3.4. Let ∂F
∂t = f1

−→
T +f2

−→
N +f3

−→
B be a differentiable and regular

flow of the curve F with MOF
{−→
T ,

−→
N,

−→
B
}
in 3-dimensional Euclidean space.
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In this case

∂
−→
T

∂t
=

(
f1 +

∂

∂s
(f2) +

κ
′

κ
f2 − τf3

)
−→
N +

((
τf2 +

∂

∂s
(f3

)
+

κ
′

κ
f3

)
−→
B,

∂
−→
N

∂t
= −

(
κ2f1 + κ2 ∂

∂s
(f2) + κκ

′
f2 − κ2τf3

)
−→
T +

1

κ2
λ
−→
B,

∂
−→
B

∂t
= −

(
κ2τf2 + κ2 ∂

∂s
(f3) + κκ

′
f3

)
−→
T − 1

κ2
λ
−→
N.

Proof. Using the MOF and Theorem 3.3, we calculate

∂
−→
T

∂t
=

∂

∂t

∂F

∂s

=
∂

∂s

(
f1
−→
T + f2

−→
N + f3

−→
B
)

=
∂

∂s
(f1)

−→
T + f1

−→
N +

∂

∂s
(f2)

−→
N + f2(−κ2−→T +

κ
′

κ

−→
N + τ

−→
B )

+
∂

∂s
(f3)

−→
B + f3

(
−τ

−→
N +

κ
′

κ

−→
B

)
,

that is

(5)
∂
−→
T

∂t
=

(
f1 +

∂

∂s
(f2) +

κ
′

κ
f2 − τf3

)
−→
N +

(
τf2 +

∂

∂s
(f3) +

κ
′

κ
f3

)
−→
B.

Now differentiate the MOF by t and by using the (5)

∂

∂t

〈−→
T ,

−→
N
〉
= 0 =

(
κ2f1 + κ2 ∂

∂s
(f2) + κκ

′
f2 − κ2τf3

)
+

〈
−→
T ,

∂
−→
N

∂t

〉
,

∂

∂t

〈−→
T ,

−→
B
〉
= 0 =

(
κ2τf2 + κ2 ∂

∂s
(f3) + κκ

′
f3

)
+

〈
−→
T ,

∂
−→
B

∂t

〉
,

∂

∂t

〈−→
N,

−→
B
〉
= 0 = λ+

〈
−→
N,

∂
−→
B

∂t

〉
.

(6)

From (5) and (6), we obtain

∂
−→
T

∂t
=

(
f1 +

∂

∂s
(f2) +

κ
′

κ
f2 − τf3

)
−→
N +

((
τf2 +

∂

∂s
(f3

)
+

κ
′

κ
f3

)
−→
B,

∂
−→
N

∂t
= −

(
κ2f1 + κ2 ∂

∂s
(f2) + κκ

′
f2 − κ2τf3

)
−→
T +

1

κ2
λ
−→
B,

∂
−→
B

∂t
= −

(
κ2τf2 + κ2 ∂

∂s
(f3) + κκ

′
f3

)
−→
T − 1

κ2
λ
−→
N,

respectively, where
〈

∂
−→
N
∂t ,

−→
B
〉
= λ.
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The conditions on partial differential equality involving the curvatures and
torsion are given in the following theorem for the curve flow F (s, t).

Theorem 3.5. Assume that
{−→
T ,

−→
N,

−→
B
}

is modified orthogonal frame in

3-dimensional Euclidean space and curve flow ∂F
∂t = f1

−→
T + f2

−→
N + f3

−→
B is

inextensible. Then the partial differential equations system is given by;

λ =κ2τf1 + κ2τ
∂

∂s
f2 + κκ

′
τf2 − κ2τ2f3 + κ2 ∂

∂s
(τf2) + κ2 ∂2

∂s2
f3

+ κ2 ∂

∂s
(
κ

′

κ
f3) + κκ

′
τf2 + κκ

′ ∂

∂s
f3 + κ′

2

f3,

∂κ2

∂t
=

∂

∂s
(κ2f1) +

∂

∂
(κ2 ∂

∂
(f2)) +

∂

∂s
(κκ

′
f2)−

∂

∂s
(κ2τf3)− κκ

′
f1

− κκ
′ ∂

∂s
(f2)− κ′

2

f2 + κκ
′
τf3 − κ2τ2f2 − κ2τ

∂

∂s
(f3)− κκ

′
τf3,

∂τ

∂t
= κ2τf2 + κ2 ∂

∂s
(f3) + κκ

′
f3 + λ

∂

∂s

(
1

κ2

)
+

1

κ2

∂

∂s
(λ)

Proof. We know that ∂
∂s

∂
−→
T
∂t = ∂

∂t
∂
−→
T

∂s . In this case we have

∂

∂s

∂
−→
T

∂t
=

∂

∂s

[(
f1 +

∂

∂s
(f2) +

κ
′

κ
f2 − τf3

)
−→
N +

(
τf2 +

∂

∂s
(f3) +

κ
′

κ
f3

)
−→
B

]

=

(
∂

∂s
(f1) +

∂2

∂s2
(f2) +

∂

∂s
(
κ

′

κ
f2)−

∂

∂s
(τf3)

)
−→
N

+

(
f1 +

∂

∂s
(f2) +

κ
′

κ
f2 − τf3

)
(−κ2−→T +

κ
′

κ

−→
N + τ

−→
B )

+

(
∂

∂s
(τf2) +

∂2

∂s2
(f3) +

∂

∂s
(
κ

′

κ
f3)

)
−→
B

+

(
τf2 +

∂

∂s
(f3) +

κ
′

κ
f3

)(
−τ

−→
N +

κ
′

κ

−→
B

)
,

while

∂

∂t

∂
−→
T

∂s
=

∂

∂t

−→
N

= −
(
κ2f1 + κ2 ∂

∂s
(f2) + κκ

′
f2 − κ2τf3

)
−→
T +

1

κ2
λ
−→
B,
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thereby

λ =κ2τf1 + κ2τ
∂

∂s
f2 + κκ

′
τf2 − κ2τ2f3 + κ2 ∂

∂s
(τf2) + κ2 ∂2

∂s2
f3

+ κ2 ∂

∂s
(
κ

′

κ
f3) + κκ

′
τf2 + κκ

′ ∂

∂s
f3 + κ′

2

f3.

Since ∂
∂s

∂
−→
N
∂t = ∂

∂t
∂
−→
N
∂s , we get

∂

∂s

∂
−→
N

∂t
=

∂

∂s

[
−
(
κ2f1 +

∂

∂s
(κ2f2) + κκ

′
f2 − κ2τf3

)
−→
T +

1

κ2
λ
−→
B

]
=−

(
∂

∂s
(κ2f1) +

∂

∂s
(κ2 ∂

∂s
(f2)) +

∂

∂s
(κκ

′
f2)−

∂

∂s
(κ2τf3)

)
−→
T

−
(
κ2f1 + κ2 ∂

∂s
(f2) + κκ

′
f2 − κ2τf3

)
−→
N

+ λ
∂

∂s
(
1

κ2
)
−→
B +

1

κ2

∂

∂s
(λ)

−→
B +

1

κ2
λ

(
−τ

−→
N +

κ
′

κ

−→
B

)
,

while

∂

∂t

∂
−→
N

∂s
=

∂

∂t

[
(−κ2−→T +

κ
′

κ

−→
N + τ

−→
B )

]

= − ∂

∂t
(κ2)

−→
T − κ2(f1 +

∂

∂s
(f2) +

κ
′

κ
f2 − τf3)

−→
N

− κ2(τf2 +
∂

∂s
(f3) +

κ
′

κ
f3)

−→
B +

∂

∂t
(
κ

′

κ
)
−→
N

− κ
′

κ

(
κ2f1 + κ2 ∂

∂s
(f2) + κκ

′
f2 − κ2τf3

)
−→
T +

κ
′

κ3
λ
−→
B

+
∂

∂t
(τ)

−→
B − τ

(
κ2τf2 + κ2 ∂

∂s
(f3) + κκ

′
f3

)
−→
T − τ

κ2
λ
−→
N.

Thereby we see that

∂κ2

∂t
=

∂

∂s
(κ2f1) +

∂

∂
(κ2 ∂

∂
(f2)) +

∂

∂s
(κκ

′
f2)−

∂

∂s
(κ2τf3)− κκ

′
f1

− κκ
′ ∂

∂s
(f2)− κ′

2

f2 + κκ
′
τf3 − κ2τ2f2 − κ2τ

∂

∂s
(f3)− κκ

′
τf3

and
∂τ

∂t
= κ2τf2 + κ2 ∂

∂s
(f3) + κκ

′
f3 + λ

∂

∂s

(
1

κ2

)
+

1

κ2

∂

∂s
(λ).

From the relation ∂
∂s

∂
−→
B
∂t = ∂

∂t
∂
−→
B
∂s no additional new formulas are obtained.
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4. Conclusions

Our results are a generalization of the inflexible curve flow formulas obtained
using the known Frenet framework. If we take κ = 1 in modified orthogonal
frame, the properties of the curves given relative to known Frenet frame are
obtained.
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