• Title/Summary/Keyword: modified interaction integral

Search Result 7, Processing Time 0.022 seconds

Computation of mixed-mode stress intensity factors in functionally graded materials by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.43-51
    • /
    • 2019
  • This paper is concerned with the numerical calculation of mixed-mode stress intensity factors (SIFs) of 2-D isotropic functionally graded materials (FGMs) by the natural element method (more exactly, Petrov-Galerkin NEM). The spatial variation of elastic modulus in non-homogeneous FGMs is reflected into the modified interaction integral ${\tilde{M}}^{(1,2)}$. The local NEM grid near the crack tip is refined, and the directly approximated strain and stress fields by PG-NEM are enhanced and smoothened by the patch recovery technique. Two numerical examples with the exponentially varying elastic modulus are taken to illustrate the proposed method. The mixed-mode SIFs are parametrically computed with respect to the exponent index in the elastic modulus and external loading and the crack angle and compared with the other reported results. It has been justified from the numerical results that the present method successfully and accurately calculates the mixed-mode stress intensity factors of 2-D non-homogeneous functionally graded materials.

A Study on Transition From Cycle-dependent to Time-dependent Crack Growth in SUS304 Stainless Steel (SUS304강의 사이클의존형에서 시간의존형균열성장으로의 천이에 관한 연구)

  • 주원식;조석수
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.38-46
    • /
    • 1996
  • High temperature low cycle fatigue crack growth behavior is investigated over a range of two temperatures and various frequencies in SUS 304 stainless steel. It is found that low frequency and temperature can enhance time-dependent crack growth. With high temperature, low frequency and long crack length, ${\Delta}J_c/{\Delta}J_ f$, the ratio of creep J integral range to fatigue J integral range is increased and time-dependent crack growth is accelerated. Interaction between ${\Delta}J_f$ and ${\Delta}J_c$ is occured at high frequency and low temparature and ${\Delta}J_c$, creep J integral range is fracture mechanical parameter on transition from cycle-dependent to time dependent crack growth in creep temperature region.

  • PDF

A full path assessment approach for vibration serviceability and vibration control of footbridges

  • Zhu, Qiankun;Hui, Xiaoli;Du, Yongfeng;Zhang, Qiong
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.765-779
    • /
    • 2019
  • Most of the existing evaluation criteria of vibration serviceability rely on the peak acceleration of the structure rather than that of the people keeping their own body unmoved on the structure who is the real receiver of structural vibrations. In order to accurately assess the vibration serviceability, therefore, a full path assessment approach of vibration serviceability based on vibration source, path and receiver is not only tentatively proposed in this paper, taking the peak acceleration of receiver into account, but also introduce a probability procedure to provide more instructive information instead of a single value. In fact, semi-rigid supported on both sides of the structure is more consistent with the actual situation than simply supported or clamped due to the application of the prefabricated footbridge structures. So, the footbridge is regarded as a beam with semi-rigid supported on both sides in this paper. The differential quadrature-integral quadrature coupled method is not only to handle different type of boundary conditions, but also after being further modified via the introduction of an approximation procedure in this work, the time-varying system problem caused by human-structure interaction can be solved well. The analytical results of numerical simulations demonstrate that the modified differential quadrature-integral quadrature coupled method has higher reliability and accuracy compared with the mode superposition method. What's more, both of the two different passive control measures, the tuned mass damper and semi-rigid supported, have good performance for reducing vibrations. Most importantly, semi-rigid supported is easier to achieve the objective of reducing vibration compared with tuned mass damper in design stage of structure.

A Study on Prediction of Crack growth Rate Under Creep-Fatigue Interaction (크리이프-피로 상호작용하의 균열성장속도 예측에 관한 연구)

  • Joo, Won-Sik;Cho, Seok-Swoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.98-111
    • /
    • 1995
  • High temperature low cycle fatigue shows that cycle-dependent crack growth owing to cyclic plastic deformation occurred simultaneosly with time-dependent crack growth owing to intergranular deformation. Consequently, to estimate crack growth rate uniquely, many to investigators have proposed various kinds of parameters and theories but these could not produce satisfactory results. Therefore the goal of this study is focused on prediction of crack growth rate using predominant damage rule, linear cumulative damage rule and transitional parameter ${\Delta}J_c/{\Delta}J_f$. On the basis of these sinusoidal loading waveform at 600$^{\circ}C$ and 700$^{\circ}C$.

  • PDF

Transition from Cycle-Dependent to Time-Dependent Fatigue Crack Propagation at Creep Temperature of SUS 304 Steel (SUS 304鋼 의 크리이프 溫度領域 에 관한 時間依存型 및 사이클依存型 疲勞크랙 傳播 의 遷移)

  • 유헌일;주원식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.539-547
    • /
    • 1985
  • The low-cycle fatigue crack growth behavior of SUS 304 Stainless steel was investigated at 650.deg. C by the nonlinear fracture mechanics. Crack Propagation can be separated in to cycle-dependent and time-dependent, the former is correlated with .DELTA. $J_{f}$ , J-intergral range and the latter is correlated with J', modified J integral. Transition from cycle-dependent to time-dependent crack growth was successfully predicted using the .betha. hypothesis, which was proposed by the authors on the basis of an analysis on the interaction of elastic and creep strain. To investigate the reliability of .betha.-hypothesis, experimenting by the change of stress-level, stress rate and frequency, following conclusions were obtained. (1) High temperature fatigue crack propagation was separated into cycle-dependent and time-dependent. (2) Transition of crack propagation was predicted by .DELTA. $J_{c}$/.DELTA.$_{f}$ or .betha. (3) Lower limit in cycle-dependent crack propagation was obtained..

Numerical Simulation of Acoustic Field Interacting between a Vortex Ring and a Rigid Sphere (원형 고리와와 강체구의 상호작용에 의한 음향장 수치해석)

  • 유기완;이덕주
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.215-222
    • /
    • 1997
  • The flow and acoustic fields due to a vortex ring interaction with a rigid sphere are simulated numerically. The flow field is regarded as three-dimensional inviscid and incompressible. The vorticity is assumed to be concentrated inside the finite core of vortex filament. The vortex filament curve, described by parabolic blending curve function, is used to effectively solve the modified Biot-Savart equation. The interaction between a vortex ring and a rigid sphere using the parabolic blending curve is calculated. The trajectory of the vortex ring is obtained with several different initial positions between the ring and the sphere. The force variations acting on the sphere are calculated by using the boundary integral method. Finally, we can also obtain the acoustic signals at the far field observation positions from the force variations acting on the rigid surface. We can find that the dipole axis of the directivity patterns are rotated during the interacting phenomena.

  • PDF

Mn Thin Film on $BaTiO_3$ Substrate: Modified Electrical and Magnetic Properties

  • Tuan, Duong Anh;Cuong, Tran Viet;Shin, Yooleemi;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.162-162
    • /
    • 2013
  • Magnetic properties of 3d transition metals were determined by exchange interaction between magnetic ions that was characterized by the exchange integral. Bulk Mn material is one of transition metals that have been well known as an anti-ferromagnetic material due to an anti-parallel spin with negative exchange integral. Here we report on the MBE growth of Mn on $BaTiO_3$ (001) substrate and induced ferromagnetism. The bcc ${\alpha}$-Mn single crystal film has been grown on $BaTiO_3$ (100) substrate. The XRD and Raman results indicated that the structural phase transitions of $BaTiO_3$ substrate induced a lattice distortion at the interface. Consequently, the grown Mn film exhibits ferromagnetism with strong saturation magnetization of 495 emu/$cm^3$ at 320 K. The electrical resistivity of the Mn film strongly depended on the crystal structure of $BaTiO_3$ substrate.

  • PDF