• Title/Summary/Keyword: modified cyclic B.C

Search Result 4, Processing Time 0.018 seconds

Performance Analysis of Three-Dimensional Transonic Centrifugal Compressor Diffuser (3차원 천음속 원심압축기 디퓨저 성능연구)

  • Kim, Sang-Dug;Song, Dong-Joo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.64-72
    • /
    • 1999
  • CSCM upwind flux difference splitting compressible Navier-Stokes method has been used to predict the transonic flows in a centrifugal compressor diffuser. The modified cyclic. TDMA and the mass flux boundary conditions were used as boundary conditions of the diffuser analysis. Broad flow separation on the suction surface near the hub and shroud was observed from the results of the mass flow rates 5.8, 6.0 and 6.2kg/s at 27000 rpm. The three-dimensional flow analysis predicted successfully that the static pressure increased and the total pressure decreased through the flow passage of the channel diffuser when compared to two-dimensional analysis due to the strong effect of the three-dimensional flow. The mass averaged loss coefficients and pressure coefficients were also studied.

  • PDF

Formic Acid Oxidation on Bi-modified Pt Nanoparticles of Various Sizes

  • Jung, Chang-Hoon;Zhang, Ting;Kim, Byung-Jun;Kim, Jan-Dee;Rhee, Choong-Kyun;Lim, Tae-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1543-1550
    • /
    • 2010
  • This work presents oxidation of formic acid on Bi-modified Pt nanoparticles of various sizes. The sizes of the studied Pt nanoparticles range from 1.5 to 5.6 nm (detailed in Rhee, C. K.; Kim, B.-J.; Ham, C.; Kim, Y.-J.; Song, K.; Kwon, K. Langmuir 2009, 25, 7140-7147), and the surfaces of the Pt nanoparticles are modified with irreversibly adsorbed Bi. The investigated coverages of Bi on the Pt nanoparticles are 0.12 and 0.25 as determined by coulometry of the oxidation of adsorbed hydrogen and Bi, and X-ray photoelectron spectroscopy. The cyclic voltammetric behavior of formic acid oxidation reveals that the adsorbed Bi enhances the catalytic activity of Pt nanoparticles by impeding a poison-forming dehydration path with a concomitant promotion of a dehydrogenation path. The chronoamperometric results indicate that elemental Bi and partially oxidized Bi are responsible for the catalytic enhancement, when the Bi coverages on Pt nanoparticles are 0.12 and 0.25, respectively. The size effect of Bi-modified Pt nanoparticles in formic acid oxidation is discussed in terms of specific activity (current per unit surface area) and mass activity (current per unit mass).

Evaluation of Marginal and Internal Integrity of Modified Resin-Bonded Fixed Partial Dentures: An In Vitro Study

  • Ahn, Sung-Hyeon;Choi, Jae-Won;Jeon, Yong-Chan;Jeong, Chang-Mo;Yoon, Mi-Jung;Lee, So-Hyoun;Huh, Jung-Bo
    • Journal of Korean Dental Science
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate the microleakage of various types of resin-bonded fixed partial dentures (RBFPDs) after artificial aging. Materials and Methods: Forty models with missing first molar were fabricated using artificial resin teeth and were divided into four groups: Group A, conventional RBFPDs design; Group B, modified RBFPDs design; Group C, assembled 3-piece RBFPDs design; and Group D, assembled 3-piece RBFPDs with different occlusal rest positions. Half of the specimens underwent chewing simulation process (240,000 cycles, 50 N load, 1.7 Hz) and thermocycling (temperatures $5^{\circ}C{\sim}55^{\circ}C$, dwelling time 30 seconds) and the remaining 20 specimens didn't receive any treatment. All the specimens were immersed in 2% methylene blue solution for 24 hours to evaluate microleakage, and were sectioned at the middle part of abutment teeth. To evaluate the microleaskage, a dye penetration was calculated. Result: With artificial aging, cyclic loading and thermocycling, a 3-piece RBPFD and a 2-piece RBPFD using original tooth undercuts have significantly lower microleakge (P<0.05) compared to the conventional design of RBPFD and modified RBPFD. Conclusion: Within the limit of this experiment, the assembled RBFPDs exhibited a smaller microleakage than the conventional RBFPDs, implying that the assembled RBFPDs can be more effective for reducing the dislodgement of the RBFPDs.

Determinations of P, S-Wave Velocities and Pore Water Pressure Buildup with B-value for Nearly Saturated Sands (비배수 조건에서 반복하중을 받는 사질토의 B값(간극수압계수)에 따른 P파, S파 속도 및 간극수압 측정)

  • Lee, Sei-Hyun;Choo, Yun-Wook;Youn, Jun-Ung;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.71-83
    • /
    • 2007
  • Liquefaction resistance depends strongly upon the degree of saturation, which is expressed in terms of the pore pressure coefficient, B. The B-value has been widely used to quantify the state of saturation of laboratory samples. However, it is practically impossible to determine in situ state of saturation by using the B-value. So, P-wave velocity can be alternatively used as a convenient index for evaluating the in situ state of saturation. In this paper, the Stokoe type torsional shear (TS) testing system was modified to saturate the specimen, with which it is also possible to measure P ($V_p$), S-wave velocity ($V_s$) and the excess pore water pressure buildup In order to examine the effect of B-value for nearly saturated sands. A series of the tests were carried out at 3 relative densities (40%, 50% and 75%) and various B-values using Toyoura sand. Based on the test results, the variations of $V_p\;and\;V_s$ with B-value were analyzed and compared with a existing theoretically derived formula. The normalized pore water pressure, $du/{\sigma}{_0}'$ and cyclic threshold shear strain, ${\gamma}^c_{th}$ with B-value were also analyzed. Additionally the test results related to pore water pressure were analyzed by $V_p$ to apply to the field seismic analysis.