• Title/Summary/Keyword: modified clay

Search Result 243, Processing Time 0.025 seconds

Application of surface modified sericite to remove anionic dye from an aqueous solution

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.312-319
    • /
    • 2017
  • The treatment of dyeing wastewater is not easy because dyes are mainly aromatic, heterocyclic compounds. The most effective technologies and methods to treat dyeing wastewater are costly and involve materials that are difficult to regenerate after use. Therefore, it is necessary to develop cost-effective, eco-friendly technologies to treat dyeing wastewater. The aim of this study was to investigate the removal of sulfur blue 11 (CI 53235) anionic dye using methyl esterified sericite (ME-sericite) adsorbents in an aqueous solution. The results are discussed in terms of the ME-sericite particle size, temperature, pH value and initial sorption rate according to the initial sulfur blue concentration. In addition, we analyzed the adsorption kinetics using a Pseudo-second-order model with the desorption and reusability. The methyl esterification caused a considerable increase in the specific surface area from 4.45 to $17.62m^2/g$. The ME-sericite adsorbents successfully removed > 98% of the sulfur dye in the aqueous solution. For the adsorption of 1 mg of sulfur dye, approximately 4.6 to 6.6 g/L ME-sericite were required. The desorption process was carried out by mixing a NaOH eluent to desorb 90.56% of the sulfur dye with 2 h of contact time. Thus, the ME-sericite is a promising adsorbent to treat dyeing wastewater due to its low dose requirement, high removal efficiency and inexpensive material.

A Consolidation Characteristics of Decomposed Mudstone Soil by Constant Rate of Strain Consolidation (일정변형률 압밀시험에 따른 이암풍화토의 압밀특성)

  • 김영수;김기영;김대만
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.99-106
    • /
    • 2000
  • The main advantage of incremental loading consolidation test is the simplicity of equipments that can be used. However, it is known that the incremental loading test has several deficiencies including long testing time, non-uniform stress state, high and variable rates of strain, very soft clay and problem of back pressure saturation. Due to these drawbacks, various testing methods including constant rate of strain consolidation test(CRS) were developed. In this paper, CRS consolidation test was performed with three different strain rate. The results were verified by the modified CRS theory of Wissa et al.(1971). And then the results obtained from the CRS consolidation tests were compared with those from incremental loading test and direct permeability test.

  • PDF

Advanced 'green' composites

  • Netravali, Anil N.;Huang, Xiaosong;Mizuta, Kazuhiro
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.269-282
    • /
    • 2007
  • Fully biodegradable high strength composites or 'advanced green composites' were fabricated using yearly renewable soy protein based resins and high strength liquid crystalline cellulose fibers. For comparison, E-glass and aramid ($Kevlar^{(R)}$) fiber reinforced composites were also prepared using the same modified soy protein resins. The modification of soy protein included forming an interpenetrating network-like (IPN-like) resin with mechanical properties comparable to commonly used epoxy resins. The IPN-like soy protein based resin was further reinforced using nano-clay and microfibrillated cellulose. Fiber/resin interfacial shear strength was characterized using microbond method. Tensile and flexural properties of the composites were characterized as per ASTM standards. A comparison of the tensile and flexural properties of the high strength composites made using the three fibers is presented. The results suggest that these green composites have excellent mechanical properties and can be considered for use in primary structural applications. Although significant additional research is needed in this area, it is clear that advanced green composites will some day replace today's advanced composites made using petroleum based fibers and resins. At the end of their life, the fully sustainable 'advanced green composites' can be easily disposed of or composted without harming the environment, in fact, helping it.

Depositional Environment and Distribution of Heavy Metal off the Shihwa Dam

  • Oh, Jae-Kyung
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.120-127
    • /
    • 1997
  • Depositional environment off the Shihwa Dam has been studied to investigate the change of sedimentation process and the pollution. In order to understand how the sediments are distributed, polluted and modified, depositional factors have been analyzed and compared with the previous data. Study area, located off the Shihwa Dam, was surveyed to collect 25 bottom samples and 2 cores in 1996 and echo-sounding in 1997. These sediments were analyzed for the study of the global characteristics of sediment such as grain size and organic matter. Among these samples, the selected twenty surface sediments were analyzed for the comparison with their contents of metallic elements (Al, Mn, Fe, V, Cr, Co, Ni, Cu, Zn, Cd, Pb, As). According to field and lab analysis of sediments, three sedimentological zones have been generally identified around study area; near the dam (sandy Silt), near the dike (Sand) and offshore (silty Sand) zones. Textural parameters show that the content of silt and clay is dominant near the dam excepting the dike zone of LNG Storage Base and offshore (Palmido). The total concentration of Mn, Ni, Fe, Zn and Cd in bulk sediments was increased after the construction of the dam, while the content of Mn and Cr were higher near tidal channel than in the offshore area. Meanwhile, the annual increasing pattern of some heavy metal has appeared in this area. Based on this primary study, modification of the depositional environment may be caused by the construction of the dam and LNG Storage Base. Additionally, environmental evaluation on organic/inorganic factors has been suggested for interpreting environmental changes caused by coastal development in the nearshore such as the Shihwa coastal area.

  • PDF

Effect of Shell Structure of Artificial Lightweight Aggregates on the Emission Rate of Absorbed Water (인공경량골재의 표피층 구조가 흡수된 물의 방출속도에 미치는 영향)

  • Kang, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.750-754
    • /
    • 2008
  • The artificial aggregates with dense surface layer (shell) was fabricated and the dependence of water emission rate upon the shell structures was studied. The EAF dust containing many flux components and waste white clay with ignition loss of above 48% were used as for liquid phase and gas forming agents during a sintering process respectively. In addition, the shell structure was modified with various processes and the modification effect on water emission rate was analyzed. The pores under $10{\mu}m$ were found in the sintered artificial light aggregates and disappeared by incorporating to a bigger pore during re-sintering. The water emission rate in an initial step depended on a void content of aggregates filled in a bottle rather than a shell structure. But, after 7 days where the water emission of the aggregate with a shell is above 40%, the shell of aggregates suppressed the water emission. The core of aggregates was exposed and most shell was lost when crushed to smaller size so, the ability for suppressing water emission of the crushed aggregates decreased. The activation energy for the water emission was $3.46{\pm}0.25{\times}10^{-1}$J/mol for the most specimens showing that the activation energy is irrelevant to the pore size distribution and shell structure.

A novel modeling of settlement of foundations in permafrost regions

  • Wang, Songhe;Qi, Jilin;Yu, Fan;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-245
    • /
    • 2016
  • Settlement of foundations in permafrost regions primarily results from three physical and mechanical processes such as thaw consolidation of permafrost layer, creep of warm frozen soils and the additional deformation of seasonal active layer induced by freeze-thaw cycling. This paper firstly establishes theoretical models for the three sources of settlement including a statistical damage model for soils which experience cyclic freeze-thaw, a large strain thaw consolidation theory incorporating a modified Richards' equation and a Drucker-Prager yield criterion, as well as a simple rheological element based creep model for frozen soils. A novel numerical method was proposed for live computation of thaw consolidation, creep and freeze-thaw cycling in corresponding domains which vary with heat budget in frozen ground. It was then numerically implemented in the FISH language on the FLAC platform and verified by freeze-thaw tests on sandy clay. Results indicate that the calculated results agree well with the measured data. Finally a model test carried out on a half embankment in laboratory was modeled.

Lesson and proposal of revised equations from the Pan method application case for soft clay improvement (PBD 공법 시공사례를 통한 교훈 및 개선안 제안)

  • 유한구;조영묵;김종석;박정규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.147-158
    • /
    • 2001
  • In general, two methods have been used to predict settlement of soft ground. One method is Terzaghi's one dimensional consolidation theory which gives time-settlement relationship using the standard consolidation test results. The other is forecasting method of ground settlement to be occured in the future using in-situ monitoring data. The above both methods have some defects in application manner or in itself especially in very deep and soft clayey ground. In view of the lessons and experiences of soft ground improvement projects, several techniques were proposed for more accurate theorectical calculation of consolidation settlement as follows ; ① Subdivision of soft ground, ② Consideration of secondary compression, ③ Using the modified compression index, etc. And also, revised hyperbolic fitting method was suggested to minimize the error of predicted future settlement. In addition, revised De-Beer equation of immediate settlement of loose sandy soil was proposed to overcome the tendency to show too small settlement calculation results by original De-Deer equation. And also, considering the various effects of settlement delay in the improved ground by vertical drains, time-settlement caculation equation(Onoue method) was revised to match the tendency of settlement delay by using the characteristics of discharge capacity decreases of vertical drain with time elapse by the pattern of hyperbolic equation.

  • PDF

A Constitutive Model for Normally Consolidated Clays (정규압밀점토의 응력 -변형률 구성 방정식)

  • 이영휘
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.71-80
    • /
    • 1992
  • A new constitutive model is proposed for normally consolidated clays. A main skeleton of the proposed model is based on the concepts of the incremental stress-strain theory by Roscoe and Poorooshasb. The equation of the undrained stress path is formulated by introducing the new pore pressure parameter(C), which is the slope of the linear line in the plot of the normalized pore pressure against the stress ratio. Once the stress increment along the constant stress ratio path (followed by untrained stress path) is know, the volumetric strains are calculated from the linear characteristics between void ratio and logarithm of the mean normal stress for any stress ratio. Then the incremental shear strains are successfully predicted by applying the flow rule derived in the modified theory by Roscoe and Burland.

  • PDF

Lab-scale impact test to investigate the pipe-soil interaction and comparative study to evaluate structural responses

  • Ryu, Dong-Man;Lee, Chi-Seung;Choi, Kwang-Ho;Koo, Bon-Yong;Song, Joon-Kyu;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.720-738
    • /
    • 2015
  • This study examined the dynamic response of a subsea pipeline under an impact load to determine the effect of the seabed soil. A laboratory-scale soil-based pipeline impact test was carried out to investigate the pipeline deformation/strain as well as the interaction with the soil-pipeline. In addition, an impact test was simulated using the finite element technique, and the calculated strain was compared with the experimental results. During the simulation, the pipeline was described based on an elasto-plastic analysis, and the soil was modeled using the Mohr-Coulomb failure criterion. The results obtained were compared with ASME D31.8, and the differences between the analysis results and the rules were specifically investigated. Modified ASME formulae were proposed to calculate the precise structural behavior of a subsea pipeline under an impact load when considering sand- and clay-based seabed soils.

Optimization Technique for Parameter Estimation used in 2-Dimensional Modelling of Nonlinear Consolidation Analysis of Soft Deposits (2차원 모델화된 연약지반의 비선형 압밀해석시 이용되는 모델변수 추정을 위한 최적화기법)

  • 김윤태;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The predicted consolidation behavior of in-situ soft clay is quite different from the meas ureal one mainly due to the approximate numerical modelling techniques as well as the uncertainties involved in soil properties and geological configurations. In order to improve the prediction, this paper takes the following pinto consideration : an optimization technique should be adopted for characterizing the in-situ properties from measurements and also an equivalent and efficient model be considered to incorporate the actual 3-D effects. The soil parameters used be the modified Camflay model, which have an effect on the process of consolidation, were back-analyzed by BFGS scheme on the basis of settlements and pore pressures measured in real sites. The optimization technique was implemented in a general consolidation analysis program SPINED. By using the program, one may be able to appropriately analyze the timetependent consolidation behavior of soft deposits.

  • PDF