• 제목/요약/키워드: moderate resolution imaging spectroradiometer

검색결과 218건 처리시간 0.027초

Near Real Time Burnt Scars Monitoring using MODIS in Thailand

  • Tanpipat Veerachai;Honda Kiyoshi;Akaakara Siri
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.149-152
    • /
    • 2005
  • A new methodology to detect forest fire burnt scars at near real time using MODIS (Moderate-resolution Imaging Spectroradiometer) data is presented here with a goal of introducing a new and improved capability to detect forest fire burnt scars in Thailand. This new technology is expected to increase the efficiency and effectiveness of the forest fire tackling resources distribution and management of the country. Using MODIS data in burnt scars detection has two major advantages - high availability of data and high resolution per performance ratio. Results prove the near real time algorithm suitable and working well in order to monitor the forest fire dynamic movement. The algorithm is based on the threshold separated linear equation of burnt and un-burnt. A ground truth experiment confirms the burnt and un-burnt? areas characteristics (temperature and NDVI). A threshold line on a scatter plot of Band I and Band 2 is determined to separate the burnt from un-burnt pixels. The different threshold values of NDVI and temperature use to identify pixels' anomaly, abnormal low NDVI and high temperature. The overlay (superimpose) method is used to verify burnt pixels. Since forest fire is a dynamic phenomenon, MODIS burnt scars information is suiting well to fill in the missing temporal information of LANDSAT for the forest fire control managing strategy in Thailand. This study was conducted in the Huai-Kha-Kaeng (HKK) Wildlife Sanctuary, Thailand

  • PDF

지면경계조건이 UM을 이용한 동아시아 여름철 단기예보에 미치는 영향 (Impacts of Land Surface Boundary Conditions on the Short-range weather Forecast of UM During Summer Season Over East-Asia)

  • 강전호;서명석
    • 대기
    • /
    • 제21권4호
    • /
    • pp.415-427
    • /
    • 2011
  • In this study, the impacts of land surface conditions, land cover (LC) map and leaf area index (LAI), on the short-range weather forecast over the East-Asian region were examined using Unified Model (UM) coupled with the MOSES 2.2 (Met-Office Surface Exchange Scheme). Four types of experiments were performed at 12-km horizontal resolution with 38 vertical layers for two months, July and August 2009 through consecutive reruns of 72-hour every 12 hours, 00 and 12 UTC. The control experiment (CTRL) uses the original IGBP (International Geosphere-Biosphere Programme) LC map and old MODIS (MODerate resolution Imaging Spectroradiometer) LAI, the new LAI experiment (NLAI) uses improved monthly MODIS LAI. The new LC experiment (NLCE) uses KLC_v2 (Kongju National Univ. land cover), and the new land surface experiment (NLSE) uses KLC_v2 and new LAI. The reduced albedo and increased roughness length over southern part of China caused by the increased broadleaf fraction resulted in increase of land surface temperature (LST), air temperature, and sensible heat flux (SHF). Whereas, the LST and SHF over south-eastern part of Russia is decreased by the decreased needleleaf fraction and increased albedo. The changed wind speed induced by the LC and LAI changes also contribute the LST distribution through the change of vertical mixing and advection. The improvement of LC and LAI data clearly reduced the systematic underestimation of air temperature over South Korea. Whereas, the impacts of LC and LAI conditions on the simulation skills of precipitation are not systematic. In general, the impacts of LC changes on the short range forecast are more significant than that of LAI changes.

DEVELOPMENT AND VALIDATION OF LAND SURFACE TEMPERATURE RETRIEVAL ALGORITHM FROM MTSAT-1R DATA

  • Hong, Ki-Ok;Kang, Jeon-Ho;Suh, Myoung-Seok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.293-296
    • /
    • 2008
  • Land surface Temperature (LST) is a very useful surface parameter for the wide range of applications, such as agriculture, numerical and climate modelling community. Whereas operational observation of LST is far from the needs of application community in the spatial Itemporal resolution and accuracy. So, we developed split-window type LST retrieval algorithm to estimate the LST from MTSAT-IR data. The coefficients of split-window algorithm were obtained by means of a statistical regression analysis from the radiative transfer simulations using MODTRAN 4 for wide range of atmospheric profiles, satellite zenith angle and lapse rate conditions including the surface inversions. The sensitivity analysis showed that the LST algorithm reproduces the LST with a reasonable quality. However, the LST algorithm overestimates and underestimates for the strong surface inversion and superadiabatic conditions especially for the warm temperature, respectively. And the performance of LST algorithms is superior when satellite zenith angle is small. The accuracy of the retrieved LST has been evaluated with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST data. The validation results showed that the correlation coefficients and RMSE are about 0.83${\sim}$0.98 and 1.38${\sim}$4.06, respectively. And the quality of LST is significantly better during night and winter time than during day and summer. The validation results showed that the LST retrieval algorithm could be used for the operational retrieval of LST from MTSAT-IR and COMS(Communication, Ocean and Meteorological Satellite) data with some modifications.

  • PDF

Statistical Analyses of the Flowering Dates of Cherry Blossom and the Peak Dates of Maple Leaves in South Korea Using ASOS and MODIS Data

  • Kim, Geunah;Kang, Jonggu;Youn, Youjeong;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • 대한원격탐사학회지
    • /
    • 제38권1호
    • /
    • pp.57-72
    • /
    • 2022
  • In this paper, we aimed to examine the flowering dates of cherry blossom and the peak dates of maple leaves in South Korea, by the combination of temperature observation data from ASOS (Automated Surface Observing System) and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate Resolution Imaging Spectroradiometer). The more recent years, the faster the flowering dates and the slower the peak dates. This is because of the impacts of climate change with the increase of air temperature in South Korea. By reflecting the climate change, our statistical models could reasonably predict the plant phenology with the CC (Correlation Coefficient) of 0.870 and the MAE (Mean Absolute Error) of 3.3 days for the flowering dates of cherry blossom, and the CC of 0.805 and the MAE of 3.8 for the peak dates of maple leaves. We could suppose a linear relationship between the plant phenology DOY (day of year) and the environmental factors like temperature and NDVI, which should be inspected in more detail. We found that the flowering date of cherry blossom was closely related to the monthly mean temperature of February and March, and the peak date of maple leaves was much associated with the accumulated temperature. Amore sophisticated future work will be required to examine the plant phenology using higher-resolution satellite images and additional meteorological variables like the diurnal temperature range sensitive to plant phenology. Using meteorological grid can help produce the spatially continuous raster maps for plant phenology.

위성 정보를 활용한 도심 지역 기온자료 지도화를 위한 인공신경망 적용 연구 (A study of artificial neural network for in-situ air temperature mapping using satellite data in urban area)

  • 전현호;정재환;조성근;최민하
    • 한국수자원학회논문집
    • /
    • 제55권11호
    • /
    • pp.855-863
    • /
    • 2022
  • 본 연구에서는 서울시 기온 지상관측 자료의 지도화를 위해 Artificial Neural Network (ANN)을 사용하였다. 지도화를 위한 보조자료로는 MODerate resolution Imaging Spectroradiometer (MODIS) 자료를 사용하였다. ANN 모델 설계를 위해 입력자료와 출력자료 간의 산점도 및 통계분석을 수행하였으며, 기온과의 상관성이 비교적 높게 나타나는 입력자료인 지표면온도, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI)와 시간(위성관측시각, Day of year), 위치(위도, 경도), 데이터 품질(운량)과 관련된 데이터 종류를 분류 및 조합하여 학습을 진행하였다. 기온자료와 상관성이 높은 데이터만으로 학습을 진행하였을 때 상관계수(r)와 Root Mean Squared Error (RMSE)의 평균값이 0.9667, 2.708℃로 우수한 성능을 보였다. 학습에 사용된 데이터의 종류가 추가될수록 더 우수한 학습 결과를 보였으며, 모든 데이터가 활용될 때에는 r과 RMSE의 평균값이 0.9840, 1.883℃로 가장 우수한 성능을 보였다. ANN 모델으로 생성한 서울시 기온 지도에서는 픽셀별 지형적 특성에 적절하게 기온이 산정된 것으로 판단되며, 추후 연구지역 확대 및 위성자료의 다양화를 통해 시단위 및 전국단위 기온 분포 분석 연구가 가능할 것이다.

우리나라에서 AERONET 태양광도계 자료를 이용한 다종위성 AOD 산출물 비교평가: MODIS, VIIRS, Himawari-8, Sentinel-3의 사례연구 (A Comparison between Multiple Satellite AOD Products Using AERONET Sun Photometer Observations in South Korea: Case Study of MODIS,VIIRS, Himawari-8, and Sentinel-3)

  • 김서연;정예민;윤유정;조수빈;강종구;김근아;이양원
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.543-557
    • /
    • 2021
  • 에어로솔은 입자의 크기와 조성 및 관측센서에 따라 상이한 분광특성을 보이기 때문에, 다양한 센서의 에어로솔 산출물에 대한 비교분석이 반드시 필요하다. 그러나, 우리나라에서 다종위성의 공식적인 AOD (Aerosol Optical Depth) 산출물을 대상으로 수년간의 자료를 수집하여 정확도 비교평가를 수행한 사례는 아직 보고된 바가 없다. 이에, 본 연구에서는 2015년 1월부터 2019년 12월까지 MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite), Himawari-8, Sentinel-3 AOD 산출물과 AERONET (Aerosol Robotic Network) 지상 태양광도계 자료의 비교분석을 통하여 위성 AOD의 성능을 평가하고, 계절적 및 지리적 차이에 따른 정확도 특성을 분석하였다. 오랜 기간 축적되어온 산출 기술에 MAIAC (Multiangle Implementation of Atmospheric Correction) 알고리듬을 추가하여 최적화된 MODIS 산출물이 가장 높은 정확도를 나타냈고(CC=0.836), VIIRS와 Himawari-8이 그보다 약간 낮은 정도의 성능을 보였으며, Sentinel-3는 비교적 최근에 발사되어 알고리듬 최적화가 아직 덜 이루어진 관계로 정확도가 낮게 나타났다. MODIS, VIIRS, Himawari-8 AOD 산출물은 계절에 따라, 그리고 도시/비도시에 따라 별다른 정확도 차이를 보이지는 않았지만, 일부 해안지역에서는 혼합화소 문제로 인하여 약간 정확도가 떨어지는 경우도 존재했다. AOD는 위성영상 대기보정의 핵심 인자이기 때문에, 본 연구의 AOD 비교평가는 향후 국토위성, 농림위성 등의 대기보정 연구에도 중요한 참고자료가 될 것으로 사료된다.

기계학습 기반 상세화를 통한 위성 지표면온도와 환경부 토지피복도를 이용한 열환경 분석: 대구광역시를 중심으로 (Thermal Characteristics of Daegu using Land Cover Data and Satellite-derived Surface Temperature Downscaled Based on Machine Learning)

  • 유철희;임정호;박선영;조동진
    • 대한원격탐사학회지
    • /
    • 제33권6_2호
    • /
    • pp.1101-1118
    • /
    • 2017
  • 급격한 도시화와 이상기후의 증가로 도시의 기온이 꾸준히 올라가고 있으며, 한 도시 안에서도 열분포 양상이 지역마다 다르게 나타나고 있어 상세한 도시 열환경 분석이 요구된다. 최근에는 위성자료를 이용한 열환경 분석이 수행되고 있으나, 위성자료는 시 공간해상도의 Trade-off 관계로 인해 정밀한 분석에 어려움이 따른다. 이 연구는 2012년부터 2016년의 대구광역시 여름철 열환경 분석을 위해, MODIS(Moderate Resolution Imaging Spectroradiometer) 1 km 공간해상도의 낮과 밤 지표면온도(낮$LST_{1km}$, 밤$LST_{1km}$)를 250 m 공간해상도(낮$LST_{250m}$, 밤$LST_{250m}$)로 상세화 시켰다. 상세화에는 기계학습 기법인 랜덤 포레스트(Random Forest)가 이용되었다. 향상된 $LST_{250m}$는 기존의 $LST_{1km}$에 비해, 대구광역시 행정동 기준 불투수면적 비율과 지표면온도가 높은 상관관계를 보여주었다. 다음으로, 상세화 된 낮과 밤$LST_{250m}$를 이용하여 Hot Spot 분석을 수행하였다. 대구광역시 행정동 중 낮과 밤 지표면온도가 Hot Spot으로 군집화된 영역을 비교하고, 토지피복도를 이용하여 그 원인을 분석했다. 낮에는 공업 및 상업지역의 비율이 높은 영역에서, 밤의 경우 주거지역의 비율이 높은 영역에서 높은 Hot Spot이 군집 되었다. 본 연구의 열환경 분석 접근은 향후 도시정책 수립 및 국민안전에 큰 기여를 할 수 있을 것으로 기대된다.

GEMS 위성관측에 기반한 지면반사도 산출 시에 오차 유발 변수에 대한 민감도 실험 (Sensitivity Experiment of Surface Reflectance to Error-inducing Variables Based on the GEMS Satellite Observations)

  • 신희우;유정문
    • 한국지구과학회지
    • /
    • 제39권1호
    • /
    • pp.53-66
    • /
    • 2018
  • 지면반사도 정보는 열평형 및 환경/기후 모니터링에 중요하다. 본 연구에서는 정지궤도위성의 Geostationary Environment Monitoring Spectrometer (GEMS) 관측에서 300-500 nm 파장 영역의 지면반사도 산출 시에 오차 유발 요소에 대한 민감도를 조사하였다. 장차 GEMS 지면반사도 산출 시에 오차 분석을 위하여 극궤도 위성의 MODerate resolution Imaging Spectroradiometer (MODIS; 공간 해상도 $1km{\times}1km$) 자료 및 Ozone Mapping Instrument (OMI; $12km{\times}24km$) 자료 그리고 복사전달모델 수치실험도 분석에 사용하였다. 본 연구에서 오차 유발 요소는 구름, 레일리 산란, 에어로졸, 오존 그리고 지면 특성이다. GEMS 저해상도($8km{\times}7km$)에서의 구름 탐지율은 MODIS 대비 약 79%이었으나, GEMS 화소의 운량이 40% 이하에서는 상대적으로 낮았다. 이러한 경향은 구름 이외의 다른 효과(에어로졸, 지면 특성)로 인하여 주로 발생하였다. RGB 영상과 복사전달모델 계산을 기초로 조사된 레일리 산란 효과는 육지에 비하여 해양 지역에서 뚜렷하였다. 지면반사도가 0.2보다 작은 경우에 위성관측 대기상단 반사도는 에어로졸 양에 비례하였으나, 0.2보다 큰 경우에는 그 반대 경향을 보였다. 또한 에어로졸 양에 의한 지면반사도 산출 오차는 자외선 영역에서 파장에 따라 급격하게 증가하였으나, 가시광선에서는 일정하거나 다소 감소하였다. 오존 흡수는 자외선 영역(328-354 nm) 중 328 nm에서 가장 크게 나타났다. 지면반사도가 0.15인 육지 경우에 음의 오존전량 아노말리(-100 DU)로 인한 지면반사도 산출 오차는 +0.1이었다. 본 연구는 GEMS 위성관측을 이용한 지면반사도 원격탐사의 정확도를 높이는데 기여할 수 있다.

제주도와 덕적도에서 관측된 초미세입자(PM2.5) 농도와 MODIS 에어러솔 광학두께와의 관계 (Relationship between PM2.5 Mass Concentrations and MODIS Aerosol Optical Thickness at Dukjuk and Jeju Island)

  • 이권호;박승식
    • 대한원격탐사학회지
    • /
    • 제28권4호
    • /
    • pp.449-458
    • /
    • 2012
  • 본 연구에서는 덕적도와 제주도에서 2005년 10월 15일부터 2007년 10월 24일 까지 9차례에 걸친 집중 관측기간 동안 포집된 PM2.5의 질량 농도 자료와 Moderate-resoultion Imaging Spectroradiometer (MODIS) 인공위성 관측자료로 분석된 대기 에어러솔 광학두께(AOT; Aerosol Optical Thickness) 자료로부터 지역 대기 중 미세 입자의 농도 변화 특성 및 대기질 감시를 위한 인공위성 자료의 활용 가능성을 분석하였다. 전체 관측 기간 중 PM2.5의 일 평균 농도는 덕적도에서는 $25.61{\pm}22.92{\mu}g/m^3$, 제주도에서는 $17.33{\pm}10.79{\mu}g/m^3$으로 변화가 크게 나타났으며, 황사가 발생한 2006년 4월 8일에는 덕적도와 제주도에서 각각 최대값 $188.89{\mu}g/m^3$$50.46{\mu}g/m^3$를 기록하였다. 또한 두 지역의 MODIS AOT 값은 $0.79{\pm}0.81$(덕적도), $0.42{\pm}0.24$(제주도)였으며, AOT의 최대값은 PM2.5와 마찬가지로 황사현상이 발생한 2007년 4월 8일에 3.73(덕적도), 1.14(제주도)로 나타났다. 그리고 지상에서 관측된 PM2.5 농도의 공간 분포 양상을 파악하기 위하여 MODIS AOT와 PM2.5의 상관관계 분석결과, 덕적도는 0.85, 고산은 0.06으로서 비교적 에어러솔의 영향을 많이 받는 덕적도가 고산보다 높은 상관계수 값을 나타내었다. 이러한 상관관계를 근거로 하여 도출된 1차 선형회귀 방정식으로부터 MODIS AOT값을 PM2.5로 환산한 결과는 인공위성 자료로부터 대기환경 감시를 가능케 하는 수단이 될 수 있어 유용할 것이다.

초단주기 지표온도 위성자료와 다변량 공간통계기법을 결합한 산지 지역의 기온 분포 추정 (Estimating Air Temperature over Mountainous Terrain by Combining Hypertemporal Satellite LST Data and Multivariate Geostatistical Methods)

  • 박선엽
    • 대한지리학회지
    • /
    • 제44권2호
    • /
    • pp.105-121
    • /
    • 2009
  • 지형 굴곡이 심한 하와이 화산섬의 경우, 측후소 분포가 매우 제한적이어서 공식적인 기온 분포도가 작성되지 못하고 있는 실정이다. 본 연구에서는 이러한 기온 지도화의 문제점을 해결하는 방법으로 위성기반의 지표온도 자료로부터 기온추정치를 추출하여 내삽법에 필요한 입력자료로 사용하였다. 추출된 온도값을 표본값으로하여 거리 역비례 가중치법(IDW)과 공동크리깅 (cokriging)을 적용하여 기온추정치를 지도화하였다. 기온과 고도값을 함께 이용한 cokriging이 IDW에 비해 크게 향상된 추정 오차값을 나타내었다. Cokriging은 주 변수와 고도와 같은 추가 변수 간의 상관관계가 유의하게 나타날 때 효과적으로 사용되는 내삽법이지만, 내삽 정확도는 계절적인 기상조건에 민감하게 영향받는 것으로 조사되었다. 강수량이 크게 증가하는 우기에는 건기에 비해 공간적인 기온변화가 크며, 이에 따라 기온 추정 오차값도 우기에 높게 나타났다.