• Title/Summary/Keyword: models & modeling

Search Result 4,703, Processing Time 0.035 seconds

Comparison between Parametric and Semi-parametric Cox Models in Modeling Transition Rates of a Multi-state Model: Application in Patients with Gastric Cancer Undergoing Surgery at the Iran Cancer Institute

  • Zare, Ali;Mahmoodi, Mahmood;Mohammad, Kazem;Zeraati, Hojjat;Hosseini, Mostafa;Naieni, Kourosh Holakouie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6751-6755
    • /
    • 2013
  • Background: Research on cancers with a high rate of mortality such as those occurring in the stomach requires using models which can provide a closer examination of disease processes and provide researchers with more accurate data. Various models have been designed based on this issue and the present study aimed at evaluating such models. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. Cox-Snell Residuals and Akaike Information Criterion were used to compare parametric and semi-parametric Cox models in modeling transition rates among different states of a multi-state model. R 2.15.1 software was used for all data analyses. Results: Analysis of Cox-Snell Residuals and Akaike Information Criterion for all probable transitions among different states revealed that parametric models represented a better fitness. Log-logistic, Gompertz and Log-normal models were good choices for modeling transition rate for relapse hazard (state $1{\rightarrow}state$ 2), death hazard without a relapse (state $1{\rightarrow}state$ 3) and death hazard with a relapse (state $2{\rightarrow}state$ 3), respectively. Conclusions: Although the semi-parametric Cox model is often used by most cancer researchers in modeling transition rates of multistate models, parametric models in similar situations- as they do not need proportional hazards assumption and consider a specific statistical distribution for time to occurrence of next state in case this assumption is not made - are more credible alternatives.

An XPDL-Based Workflow Control-Structure and Data-Sequence Analyzer

  • Kim, Kwanghoon Pio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1702-1721
    • /
    • 2019
  • A workflow process (or business process) management system helps to define, execute, monitor and manage workflow models deployed on a workflow-supported enterprise, and the system is compartmentalized into a modeling subsystem and an enacting subsystem, in general. The modeling subsystem's functionality is to discover and analyze workflow models via a theoretical modeling methodology like ICN, to graphically define them via a graphical representation notation like BPMN, and to systematically deploy those graphically defined models onto the enacting subsystem by transforming into their textual models represented by a standardized workflow process definition language like XPDL. Before deploying those defined workflow models, it is very important to inspect its syntactical correctness as well as its structural properness to minimize the loss of effectiveness and the depreciation of efficiency in managing the corresponding workflow models. In this paper, we are particularly interested in verifying very large-scale and massively parallel workflow models, and so we need a sophisticated analyzer to automatically analyze those specialized and complex styles of workflow models. One of the sophisticated analyzers devised in this paper is able to analyze not only the structural complexity but also the data-sequence complexity, especially. The structural complexity is based upon combinational usages of those control-structure constructs such as subprocesses, exclusive-OR, parallel-AND and iterative-LOOP primitives with preserving matched pairing and proper nesting properties, whereas the data-sequence complexity is based upon combinational usages of those relevant data repositories such as data definition sequences and data use sequences. Through the devised and implemented analyzer in this paper, we are able eventually to achieve the systematic verifications of the syntactical correctness as well as the effective validation of the structural properness on those complicate and large-scale styles of workflow models. As an experimental study, we apply the implemented analyzer to an exemplary large-scale and massively parallel workflow process model, the Large Bank Transaction Workflow Process Model, and show the structural complexity analysis results via a series of operational screens captured from the implemented analyzer.

Multi-facetted Approach to Mathematical Model Representation and Management (수리 모형의 표현과 관리를 위한 다면적 접근법)

  • 김종우;김형도;박성주
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.157-185
    • /
    • 1998
  • One of the essential issues in model systems is how to represent and manipulate mathematical modeling knowledge. As the bases of integrated modeling environments, current modeling frameworks have limitations: lack of facility to coordinate different users perpectives and lack of mechanism to reuse modeling knowledge. In this paper, multi-facetted modeling approach is proposed as a basis for the development of integrated modeling environment which provides facilities for (1) independent management of modeling knowledge from individual models; (2) object-oriented conceptual blackboard concept; (3) multi-facetted modeling; and (4) declarative representation of mathematical knowledge. The proposed multi-facetted approach is illustrated using multicommodity transportation models.

  • PDF

Language Modeling Approaches to Information Retrieval

  • Banerjee, Protima;Han, Hyo-Il
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.3
    • /
    • pp.143-164
    • /
    • 2009
  • This article surveys recent research in the area of language modeling (sometimes called statistical language modeling) approaches to information retrieval. Language modeling is a formal probabilistic retrieval framework with roots in speech recognition and natural language processing. The underlying assumption of language modeling is that human language generation is a random process; the goal is to model that process via a generative statistical model. In this article, we discuss current research in the application of language modeling to information retrieval, the role of semantics in the language modeling framework, cluster-based language models, use of language modeling for XML retrieval and future trends.

Narratives of Science Educators Concerning the Relationship between Theoretical Concepts and Modeling: Focus Group Discussions (과학적 이론과 모델의 관계에 대한 과학교육 연구자들의 이야기 - 포커스 그룹 토의 -)

  • Choi, Jinhyeon;Lee, Jong-Hyeok;Lee, Hyekeoung;Ryu, Kumbok;Kim, Kwan-Young;Jeon, Sang-Hak;Lee, Sun-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.4
    • /
    • pp.538-559
    • /
    • 2023
  • In this study, the interplay between models and theories was explored through a series of focus group discussions (FGDs) involving five experts in science education. The FGDs were held seven times, beginning with the question of what is modeling in relation to models, which is a current area of research in science education. Throughout the discussion, several key issues regarding models and modeling were addressed, with a particular emphasis on their relationship to theory. A notable finding from this study is that the participants' discussions did not converge into a single viewpoint regarding the relationship between theory and models; instead, multiple related issues emerged, leading to attempts to reframe existing concepts and seek new understanding. The study findings relate to three main areas of inquiry: What is the meaning of models or modeling? What is the nature of the relationship between models and theories?, and Is modeling possible without a foundation in theory? Particularly, the relationship between models and theories was discussed in reference to the following points: 1) Is a model to be understood as derived from theory, and is modeling the application of theory to phenomena? 2) Can a model be inferred from theory? 3) Does modeling originate from a specific, structured foundational theory (a framework of empirical knowledge), or is it to be understood through the integration of various resources without explicit reference to a foundational theory? Based on the study outcomes, implications are presented for philosophy of science and for researchers and educators working in the realm of science education.

Education and Application of Modeling on 3D Structure using Geogebra (지오지브라를 이용한 3차원 구조물의 모델링 교육과 응용)

  • Chung, Tae-Eun;Kim, Tae-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.93-103
    • /
    • 2015
  • In this study, we organize and explain various ways to construct 3D models in the 2D plane using Geogebra, mathematical education software that enables us to visualize dynamically the interaction between algebra and geometry. In these ways, we construct three unit vectors for 3 dimensions at a point on the Cartesian coordinates, on the basis of which we can build up the 3D models by putting together basic mathematical objects like points, lines or planes. We can apply the ways of constructing the 3 dimensions on the Cartesian coordinates to modeling of various structures in the real world, and have chances to translate, rotate, zoom, and even animate the structures by means of slider, one of the very important functions in Geogebra features. This study suggests that the visualizing and dynamic features of Geogebra help for sure to make understood and maximize learning effectiveness on mechanical modeling or the 3D CAD.

A study on a modeling method about current-voltage characteristic of HTS tape considering resistance of stabilizer

  • Lee, W.S.;Lee, J.;Nam, S.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.9-12
    • /
    • 2013
  • Current-voltage characteristic models of superconducting material are suggested by many researchers. These current-voltage characteristic models are important because they can be used for design or simulation of superconductor devices. But widely used current-voltage models of superconductor wire still have some limitations. For example, a standard E-J power model has no parameters related with stabilizer's resistance in superconductor wire. In this paper, a current-voltage characteristic modeling method for high temperature superconductor (HTS) tape with considering the effect of stabilizer is introduced. And a current-voltage characteristic of a HTS tape is measured under different stabilizer conditions. Those measured current-voltage characteristics of the HTS tape modeled with proposed modeling method and the modeling results are compared.

The study on the multizone modeling for preventing transmission of air borne contagion (실내 미생물오염 전파방지를 위한 멀티죤 모델링에 관한 연구)

  • Choi, Sang-Gon;Lee, Hyun-Woo;Hong, Jin-Kwan
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.429-435
    • /
    • 2006
  • In this study multi-zone modeling program CONTAM 2.4 which is developed by NIST is used for modeling the air disinfection system which is consist of dilution, filtration, ultra violet germicidal irradiation (UVGI) for removing the indoor microorganism such as bacteria and fungus. Developed models those protect occupants against indoor microorganism generated in our daily life are enable to use for immune building simulation tool. Also, results indicate that those models are enable to compute the real situation that is almost impossible of carrying out experiment and identify the disinfection rate with highly reliance. Results also suggest that engineers will use these models as a design tool for the immune building system.

  • PDF

Mosfet Models, Quantum Mechanical Effects and Modeling Approaches: A Review

  • Chaudhry, Amit;Roy, J.N.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.20-27
    • /
    • 2010
  • Modeling is essential to simulate the operation of integrated circuit (IC) before its fabrication. Seeing a large number of Metal-Oxide-Silicon Field-Effect-Transistor (MOSFET) models available, it has become important to understand them and compare them for their pros and cons. The task becomes equally difficult when the complexity of these models becomes very high. The paper reviews the mainstream models with their physical relevance and their comparisons. Major short-channel and quantum effects in the models are outlined. Emphasis is set upon the latest compact models like BSIM, MOS Models 9/11, EKV, SP etc.

Model Coupling Technique for Level Access in Hierarchical Simulation Models and Its Applications (계층의 구조를 갖는 시뮬레이션 모델에 있어서 단계적 접근을 위한 모델연결 방법론과 그 적용 예)

  • 조대호
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.2
    • /
    • pp.25-40
    • /
    • 1996
  • Modeling of systems for intensive knowledge-based processing requires a modeling methodology that makes efficient access to the information in huge data base models. The proposed level access mothodology is a modeling approach applicable to systems where data is stored in a hierarchical and modular modules of active memory cells(processor/memory pairs). It significantly reduces the effort required to create discrete event simulation models constructed in hierarchical, modular fashion for above application. Level access mothodology achieves parallel access to models within the modular, hierarchical modules(clusters) by broadcasting the desired operations(e.g. querying information, storing data and so on) to all the cells below a certain desired hierarchical level. Level access methodology exploits the capabilities of object-oriented programming to provide a flexible communication paradigm that combines port-to-port coupling with name-directed massaging. Several examples are given to illustrate the utility of the methodology.

  • PDF