• 제목/요약/키워드: modeling-based learning cycle

검색결과 12건 처리시간 0.024초

야외지질답사 및 모델링 기반 순환 학습에서 학생들이 그린 그림의 목적과 기능에 대한 이해 (Understanding Purposes and Functions of Students' Drawing while on Geological Field Trips and during Modeling-Based Learning Cycle)

  • 최윤성
    • 한국지구과학회지
    • /
    • 제42권1호
    • /
    • pp.88-101
    • /
    • 2021
  • 이 연구의 목적은 학생들이 그린 그림이 야외지질답사와 모델링 기반 순환 학습에서 어떤 의미를 갖는지 질적으로 탐색하는 것이다. 서울의 한 대학 부설 영재교육원에 재학 중인 10명의 학생이 참여하였다. 한탄강 형성과정이라는 것을 주제로 야외지질답사와 3차시 모델링 3차시 수업을 진행하였다. 각 차시별 학생들이 작성했던 모든 기록장(글, 그림), 연구자 필드노트, 학생들이 참여한 모든 영상 자료 및 음성 녹음, 전사한 인터뷰 자료 등을 연구진과 공유하였다. Hatisaru (2020) 그림 표상화를 야외지질학습의 맥락에 맞게 수정하여 그림의 유형을 분류하였다. 학생들의 글(text, memo)을 포함한 그림의 특징을 분석하기 위해 연연적 내용 분석(deductive content analysis)을 사용하였다. 또한, 그림이 모델링 기반 순환 과정(자료 수집 관찰, 모델 생성, 모델 발달, 자연현상의 구체화) 속에서 어떤 역할을 하는지 분석하였다. 그 결과 학생들의 그림 유형은 지질학적인 개념을 포함한 상징적 이미지, 지형학적으로 외형을 묘사한 외형적 이미지, 학생들의 심리적인 영역을 표현한 정의적 이미지가 있었다. 특징은 설명, 생산화, 정교화, 증거, 일치, 심상(心狀)으로 분류하였다. 그림의 유형과 특징은 모델링 기반 순환 학습 과정에서 연속적으로 나타나며 학생들의 모델 발달 과정 속에서 학생들의 인지적인 영역에 관한 특성과 학업에 대한 긍정적인 태도와 감정을 반영하였다. 학생들이 그린 그림은 야외지질답사와 모델링 과정 모두에 있어서 학생들의 사고와 의사표현을 반영할 수 있는 도구로써 의미를 있음을 밝힘으로써 과학교육 관계자들에게 학생들의 그림 그리기 활동의 중요성을 역설하였다.

실사용에 의한 학습효과가 컴퓨터 시스템의 수용에 미치는 영향에 관한 연구 (A Study on Influence of Usage Learning Effect for Computer System Acceptance)

  • 김종수
    • 산업경영시스템학회지
    • /
    • 제33권3호
    • /
    • pp.176-183
    • /
    • 2010
  • The benefits of information technology cannot be obtained unless potential users utilize it for their work. This led to a lot of research works on computer system acceptance. But most of the works address the early stage of system introduction, leaving the learning effect on system acceptance unexplored. In this longitudinal study, two groups of novice and experienced users have been empirically investigated and compared for their acceptance of computer system and for the learning effect of actual usage. A research model based on the technology acceptance theory has been proposed and applied to the two groups. The result shows that the factor job relevance gets more important and the effect of user training on system acceptance diminishes as time passes. This finding may help introducing computer systems which can be easily accepted by users over the whole life cycle period of computer systems.

User Review Mining: An Approach for Software Requirements Evolution

  • Lee, Jee Young
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.124-131
    • /
    • 2020
  • As users of internet-based software applications increase, functional and non-functional problems for software applications are quickly exposed to user reviews. These user reviews are an important source of information for software improvement. User review mining has become an important topic of intelligent software engineering. This study proposes a user review mining method for software improvement. User review data collected by crawling on the app review page is analyzed to check user satisfaction. It analyzes the sentiment of positive and negative that users feel with a machine learning method. And it analyzes user requirement issues through topic analysis based on structural topic modeling. The user review mining process proposed in this study conducted a case study with the a non-face-to-face video conferencing app. Software improvement through user review mining contributes to the user lock-in effect and extending the life cycle of the software. The results of this study will contribute to providing insight on improvement not only for developers, but also for service operators and marketing.

일개 간호대학 학생의 학습성과 평가관리를 위한 웹 기반 학습성과 관리시스템 (The development of a web-based database system for managing program learning outcomes in a nursing school)

  • 문미경;이수경
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2665-2673
    • /
    • 2015
  • 본 연구는 성과기반 교육의 핵심인 효율적인 학습성과 평가 관리를 위해 웹 기반 학습성과 관리시스템을 개발하기 위해 시행되었다. 이에 시스템 개발 생명 주기(System Development Life Cycle)모델에 근거하여 분석-설계-구현-평가의 과정에 따라 사용자의 요구를 분석하여 컨텐츠와 시스템을 구성하고 설계하여 관리시스템을 개발하였으며, 시스템 구현 후 사용자의 만족도를 분석하였다. 개발된 시스템을 통해 졸업 시점에 이른 학생들의 학습성과 평가결과를 학습성과 별, 학생 개인별로 달성목표가 성취되었는지를 한 눈에 모니터 할 수 있게 되었다. 이를 통해 일정한 목표수준에 도달하지 못한 학습성과 항목 및 학생들의 원인 분석과 필요한 개선방안을 모색할 수 있게 됨으로써 효율적인 학습성과 평가관리가 가능하게 되었다.

컴퓨팅 사고력 신장을 위한 퍼즐 기반 컴퓨터과학 교육 프로그램의 효과 예측 (Predicting the Effect of Puzzle-based Computer Science Education Program for Improving Computational Thinking)

  • 오정철;김종훈
    • 정보교육학회논문지
    • /
    • 제23권5호
    • /
    • pp.499-511
    • /
    • 2019
  • 본 연구의 선행 연구에서는 1~3차에 걸쳐 초등학생의 컴퓨팅 사고력 신장을 위한 퍼즐 기반 컴퓨터과학 교육 프로그램을 개발하여 현장에 투입하며 교육 효과를 CT창의성과 CT인지력으로 나눠 검증하고 교육 프로그램을 개선해왔다. 본 연구에서는 이러한 선행 연구 결과를 바탕으로 연령과 CT사고력 하위 요소를 매개 변수로 사용하여 계층적 베이지안 추론 모델링을 실시하였다. 그리고 그 결과를 바탕으로 중 고등학교에서 퍼즐 기반 컴퓨터과학 교육 프로그램의 효과를 예측하고 향후 투입할 중 고등학교의 퍼즐 기반 컴퓨터과학 교육 프로그램의 주요 개선 항목과 개선 방향을 제안하였다.

리튬이온 배터리 수명추정을 위한 용량예측 머신러닝 모델의 성능 비교 (Comparison of the Machine Learning Models Predicting Lithium-ion Battery Capacity for Remaining Useful Life Estimation)

  • 유상우;신용범;신동일
    • 한국가스학회지
    • /
    • 제24권6호
    • /
    • pp.91-97
    • /
    • 2020
  • 리튬이온 배터리(LIB)는 다른 배터리에 비해 수명이 길고, 에너지 밀도가 높으며, 자체 방전율이 낮아, 에너지 저장장치(ESS)로 선호되고 있다. 하지만, 2017~2019년 기간 동안 국내에서만도 28건의 화재사고가 발생하였으며, LIB의 운영 중 안전성 및 신뢰성을 보장하기 위해 LIB의 정확한 용량추정은 필수요소이다. 본 연구에서는 LIB의 충방전 cycle에 따른 용량변화를 예측하는 기계학습 기반 모델의 설계에 있어 중요한 요소인 최적 머신러닝 모델의 선정을 위해, Decision Tree, 앙상블학습법, Support Vector Regression, Gaussian Process Regression (GPR) 각각을 이용한 예측모델을 구현하고 성능비교를 실시하였다. 학습을 위해 NASA에서 제공하는 시험데이터를 사용하였으며, GPR이 가장 좋은 예측성능을 보였다. 이를 바탕으로 추가 시험데이터 학습을 통해 개선된 LIB 용량예측과 잔여 수명추정 모델을 개발하여, 운영 중 이상 감지 및 모니터링 성능을 높여, 보다 안전하고 안정된 ESS 운용에 활용하고자 한다.

An Integrated Artificial Neural Network-based Precipitation Revision Model

  • Li, Tao;Xu, Wenduo;Wang, Li Na;Li, Ningpeng;Ren, Yongjun;Xia, Jinyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1690-1707
    • /
    • 2021
  • Precipitation prediction during flood season has been a key task of climate prediction for a long time. This type of prediction is linked with the national economy and people's livelihood, and is also one of the difficult problems in climatology. At present, there are some precipitation forecast models for the flood season, but there are also some deviations from these models, which makes it difficult to forecast accurately. In this paper, based on the measured precipitation data from the flood season from 1993 to 2019 and the precipitation return data of CWRF, ANN cycle modeling and a weighted integration method is used to correct the CWRF used in today's operational systems. The MAE and TCC of the precipitation forecast in the flood season are used to check the prediction performance of the proposed algorithm model. The results demonstrate a good correction effect for the proposed algorithm. In particular, the MAE error of the new algorithm is reduced by about 50%, while the time correlation TCC is improved by about 40%. Therefore, both the generalization of the correction results and the prediction performance are improved.

양방향 LSTM기반 시계열 특허 동향 예측 연구 (A patent application filing forecasting method based on the bidirectional LSTM)

  • 최승완;김광수;곽수영
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.545-552
    • /
    • 2022
  • 특정 분야의 특허출원수는 기술의 수명주기 및 산업의 활성화 정도와 밀접한 관계를 가지고 있다. 따라서 사전에 사업을 준비하는 기업들과 미래 유망 기술을 초기 단계에서 선발하여 투자하고자 하는 정부 기관들은 미래의 특허 출원수 예측에 대해 큰 관심을 가지고 있다. 본 논문에서는 시계열 데이터에 적합한 RNN의 기법 중 하나인 양방향 LSTM 기법을 이용하여 기존 예측 방법들보다 정확도를 높이는 방법을 제안한다. 5개 분야의 대한민국 특허 출원 데이터에 대해서 제안된 방법은 기존에 사용되던 확산 모델 중 하나인 Bass 모델과 비교하여 평균 절대 백분율 오차(MAPE)의 값이 약 16퍼센트 향상된 결과를 보여준다.

Identification of Mechanical Parameters of Kyeongju Bentonite Based on Artificial Neural Network Technique

  • Kim, Minseop;Lee, Seungrae;Yoon, Seok;Jeon, Min-Kyung
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.269-278
    • /
    • 2022
  • The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.

주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법 (Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity)

  • 김혜진;박예슬;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.299-306
    • /
    • 2022
  • 최근 로봇이나 설비, 회로 등에 센서 내장이 보편화 되고, 측정된 센서 데이터를 학습하여 기기의 고장을 진단하기 위한 연구가 활발하게 수행되고 있다. 이러한 고장 진단 연구는 고장 상황이나 종류를 예측하기 위한 분류(Classification) 모델 개발과 정량적으로 고장 상황을 예측하기 위한 회귀(Regression) 모델 개발로 구분된다. 분류 모델의 경우, 단순히 고장이나 결함의 유무(Class)를 확인하는 반면, 회귀 모델은 무수히 많은 수치 중에 하나의 값(Value)을 예측해야 하므로 학습 난이도가 더 높다. 즉, 입력과 출력을 대응시켜 고장을 예측을 할 때, 유사한 입력값이 동일한 출력을 낸다고 결정하기 어려운 불규칙한 상황이 다수 존재하기 때문이다. 따라서 본 논문에서는 주기성을 지닌 입출력 데이터에 초점을 맞추어, 입출력 관계를 분석하고, 슬라이딩 윈도우 기반으로 입력 데이터를 패턴화 하여 입출력 데이터 간의 규칙성을 확보하도록 한다. 제안하는 방법을 적용하기 위해, 본 연구에서는 MMC(Modular Multilevel Converter) 회로 시스템으로부터 주기성을 지닌 전류, 온도 데이터를 수집하여 ANN을 이용하여 학습을 진행하였다. 실험 결과, 한 주기의 2% 이상의 윈도우를 적용하였을 때, 적합도 97% 이상의 성능이 확보될 수 있음을 확인하였다.