• 제목/요약/키워드: modeling procedures

Search Result 406, Processing Time 0.022 seconds

Assessment of modal parameters considering measurement and modeling errors

  • Huang, Qindan;Gardoni, Paolo;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.717-733
    • /
    • 2015
  • Modal parameters of a structure are commonly used quantities for system identification and damage detection. With a limited number of studies on the statistics assessment of modal parameters, this paper presents procedures to properly account for the uncertainties present in the process of extracting modal parameters. Particularly, this paper focuses on how to deal with the measurement error in an ambient vibration test and the modeling error resulting from a modal parameter extraction process. A bootstrap approach is adopted, when an ensemble of a limited number of noised time-history response recordings is available. To estimate the modeling error associated with the extraction process, a model prediction expansion approach is adopted where the modeling error is considered as an "adjustment" to the prediction obtained from the extraction process. The proposed procedures can be further incorporated into the probabilistic analysis of applications where the modal parameters are used. This study considers the effects of the measurement and modeling errors and can provide guidance in allocating resources to improve the estimation accuracy of the modal data. As an illustration, the proposed procedures are applied to extract the modal data of a damaged beam, and the extracted modal data are used to detect potential damage locations using a damage detection method. It is shown that the variability in the modal parameters can be considered to be quite low due to the measurement and modeling errors; however, this low variability has a significant impact on the damage detection results for the studied beam.

A VALIDATION METHOD FOR EMERGENCY OPERATING PROCEDURES OF NUCLEAR POWER PLANTS BASED ON DYNAMIC MULTI-LEVEL FLOW MODELING

  • QIN WEI;SEONG POONG HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.118-126
    • /
    • 2005
  • While emergency operating procedures (EOPs) occupy an important role in the management of various abnormal situations in nuclear power plants (NPPs), current technology for the validation of EOPs still largely depends on manual review. A validation method for EOPs of NPPs is thus proposed based on dynamic multi-level flow modeling (MFM). The MFM modeling procedure and the EOP validation procedure are developed and provided in the paper. Application of the proposed method to EOPs of an actual NPP shows that the proposed method provides an efficient means of validating EOPs. It is also found that the information on state transitions in MFM models during the management of abnormal situations is also useful for further analysis on EOPs including their optimization.

Air quality modeling guideline for national air policy development and evaluation - Part I General information - (국가 대기정책수립 및 평가를 위한 대기질 모델링 가이드라인 - Part I 일반 사항 -)

  • Lee, Dae-Gyun;Lee, Yong-Mi;Lee, Mi-Hyang;Hong, Sung-Chul;Hong, Ji-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.537-546
    • /
    • 2013
  • In the Seoul Metropolitan Area(SMA) photochemical air pollutants, nitrogenic compound and particulate matters have increased substantially due to mobile sources, power plants and so on. Therefore 'Special Act on Seoul Metropolitan Air Quality Improvement' was enacted on 2003 in order to improve air quality in the SMA. According to the Special Act, Central and local government have developed the state implementation plan(SIP) to reduce air pollutant emissions from various local sources. One of the key elements of the SIP development is the air quality modeling since modeling results can be used to establish emissions control strategies as well as to demonstrate attainment of air quality goals for ozone, particulate matter, and so on. Air quality modeling, therefore, can be usefully utilized to investigate the effects of government's efforts according to control strategies or measures. Using the air quality model, we can determine whether the implementation plan should be revised or not. A number of questions, however, has been raised concerning accuracy, consistency and transparency of modeling results because if we do not trust modeling results, all the measures dependent on modeling becomes in vain. So, without dealing with these questions, we can not guarantee the reliability and utilizability of air quality modeling results. In this study, we tried to establish standard methodology for air quality modeling in order to ensure consistency and transparency of modeling results used in the development and evaluation of national air policy. For this purpose, we established air quality modeling guideline to provide or recommend modeling procedures, vertical and horizontal domains, input data of meteorological and air quality modeling and so on.

Concept of an intelligent operator support system for initial emergency responses in nuclear power plants

  • Kang, Jung Sung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2453-2466
    • /
    • 2022
  • Nuclear power plant operators in the main control room are exposed to stressful conditions in emergency situations as immediate and appropriate mitigations are required. While emergency operating procedures (EOPs) provide operators with the appropriate tasks and diagnostic guidelines, EOPs have static properties that make it difficult to reflect the dynamic changes of the plant. Due to this static nature, operator workloads increase because unrelated information must be screened out and numerous displays must be checked to obtain the plant status. Generally, excessive workloads should be reduced because they can lead to human errors that may adversely affect nuclear power plant safety. This paper presents a framework for an operator support system that can substitute the initial responses of the EOPs, or in other words the immediate actions and diagnostic procedures, in the early stages of an emergency. The system assists operators in emergency operations as follows: performing the monitoring tasks in parallel, identifying current risk and latent risk causality, diagnosing the accident, and displaying all information intuitively with a master logic diagram. The risk causalities are analyzed with a functional modeling methodology called multilevel flow modeling. This system is expected to reduce workloads and the time for performing initial emergency response procedures.

Design of Screening Inspection Procedures Based on Guard Bands Considering Measurement Errors (측정오류를 고려한 가드밴드 기반 스크리닝 검사방식의 설계)

  • Kim, Young Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.673-681
    • /
    • 2013
  • Purpose: The purpose of this study is to investigate the design optimization modeling of screening procedures based on the assessment of misclassification errors. Methods: Misclassification errors due to measurement variability are derived for normally distributed quality characteristics. Further, an optimization model for ensuring the level of outgoing quality is proposed and demonstrated through an illustrative example. Results: It is shown that two types of misclassification errors (i.e., false acceptance and false rejection) may be properly compromised through an analytical assessment of measurement errors and an optimization modeling. It is also discussed that a variety of optimization modeling may be enabled based on the derivation of measurement errors. Conclusion: It may be concluded that the design of screening inspection may further be facilitated by including the effect of measurement errors on the performance of screening inspection procedure.

Solution verification procedures for modeling and simulation of fully coupled porous media: static and dynamic behavior

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.67-98
    • /
    • 2015
  • Numerical prediction of dynamic behavior of fully coupled saturated porous media is of great importance in many engineering problems. Specifically, static and dynamic response of soils - porous media with pores filled with fluid, such as air, water, etc. - can only be modeled properly using fully coupled approaches. Modeling and simulation of static and dynamic behavior of soils require significant Verification and Validation (V&V) procedures in order to build credibility and increase confidence in numerical results. By definition, Verification is essentially a mathematics issue and it provides evidence that the model is solved correctly, while Validation, being a physics issue, provides evidence that the right model is solved. This paper focuses on Verification procedure for fully coupled modeling and simulation of porous media. Therefore, a complete Solution Verification suite has been developed consisting of analytical solutions for both static and dynamic problems of porous media, in time domain. Verification for fully coupled modeling and simulation of porous media has been performed through comparison of the numerical solutions with the analytical ones. Modeling and simulation is based on the so called, u-p-U formulation. Of particular interest are numerical dispersion effects which determine the level of numerical accuracy. These effects are investigated in detail, in an effort to suggest a compromise between numerical error and computational cost.

A Study on Realization of SCR Characteristics (SCR특성의 실현에 관한 연구)

  • 박의열
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.70-74
    • /
    • 1973
  • This paper dealt with circuit modeling of SCR and gate turn-off SCR by using complementary symmetrical tansistor circuit, which is modified circuit of input current dependent, current stable negative resitance circuit. Operation of this circuit is estimated and analyzed, with which compared with conventional SCR modeling circuit. Also operation and the design procedures are checked by experiments.

  • PDF

Risk factors for unexpected readmission and reoperation following open procedures for shoulder instability: a national database study of 1,942 cases

  • John M. Tarazi;Matthew J. Partan;Alton Daley;Brandon Klein;Luke Bartlett;Randy M. Cohn
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.3
    • /
    • pp.252-259
    • /
    • 2023
  • Background: The purpose of this study was to identify demographics and risk factors associated with unplanned 30-day readmission and reoperation following open procedures for shoulder instability and examine recent trends in open shoulder instability procedures. Methods: The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was queried using current procedural terminology (CPT) codes 23455, 23460, and 23462 to find patients who underwent shoulder instability surgery from 2015 to 2019. Independent sample Student t-tests and chi-square tests were used in univariate analyses to identify demographic, lifestyle, and perioperative variables related to 30-day readmission following repair for shoulder instability. Multivariate logistic regression modeling was subsequently performed. Results: In total, 1,942 cases of open surgical procedures for shoulder instability were identified. Within our study sample, 1.27% of patients were readmitted within 30 days of surgery, and 0.85% required reoperation. Multivariate logistic regression modeling confirmed that the following patient variables were associated with a statistically significant increase in the odds of readmission: open anterior bone block/Latarjet-Bristow procedure, being a current smoker, and a long hospital stay (all P<0.05). Multivariate logistic regression modeling confirmed statistically significant increased odds of reoperation with an open anterior bone block or Latarjet-Bristow procedure (P<0.05). Conclusions: Unplanned 30-day readmission and reoperation after open shoulder instability surgery is infrequent. Patients who are current smokers, have an open anterior bone block or Latarjet-Bristow procedure, or a longer than average hospital stay have higher odds of readmission than others. Patients who undergo an open anterior bone block or Latarjet-Bristow procedure have higher odds of reoperation than those who undergo an open soft-tissue procedure. Level of evidence: III.

Secondary Analysis on Pressure Injury in Intensive Care Units

  • Hyun, Sookyung
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.145-150
    • /
    • 2021
  • Patients with Pressure injuries (PIs) may have pain and discomfort, which results in poorer patient outcomes and additional cost for treatment. This study was a part of larger research project that aimed at prediction modeling using a big data. The purpose of this study were to describe the characteristics of patients with PI in critical care; and to explore comorbidity and diagnostic and interventive procedures that have been done for patients in critical care. This is a secondary data analysis. Data were retrieved from a large clinical database, MIMIC-III Clinical database. The number of unique patients with PI was 2,286 in total. Approximately 60% were male and 68.4% were White. Among the patients, 9.9% were dead. In term of discharge disposition, 56.2% (33.9% Home, 22.3% Home Health Care) where as 32.3% were transferred to another institutions. The rest of them were hospice (0.8%), left against medical advice (0.7%), and others (0.2%). The top three most frequently co-existing kinds of diseases were Hypertension, not otherwise specified (NOS), congestive heart failure NOS, and Acute kidney failure NOS. The number of patients with PI who have one or more procedures was 2,169 (94.9%). The number of unique procedures was 981. The top three most frequent procedures were 'Venous catheterization, not elsewhere classified,' and 'Enteral infusion of concentrated nutritional substances.' Patient with a greater number of comorbid conditions were likely to have longer length of ICU stay (r=.452, p<.001). In addition, patient with a greater number of procedures that were performed during the admission were strongly tend to stay longer in hospital (r=.729, p<.001). Therefore, prospective studies focusing on comorbidity; and diagnostic and preventive procedures are needed in the prediction modeling of pressure injury development in ICU patients.

Developing A Pre-and Post-Procellor for Building Analysis (건축구조해석을 위한 선후처리 프로그램의 개발)

  • 이정재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.31-43
    • /
    • 1994
  • General concepts and overall procedures of interactive graphical user interface, a preand post- processor, for building analysis are introduced. Attention is forcused on the data structures and the modeling operators which can ensure the intergrity of its database should have. An example of model building process is presented to illustrate its capability, its facilities for modifying, and for processing.

  • PDF