• Title/Summary/Keyword: modeling of liquid crystals

Search Result 3, Processing Time 0.017 seconds

Crystal Growth of LiNbO3 for SAW Devices (SAW Device 응용을 위한 LiNbO3 단결정 성장)

  • 최종건;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.78-82
    • /
    • 1988
  • Good quality LiNbO3 single crystals which can be applied to SAW devices, were grown by Czochralski method. It was observed that the gas-bubbles were concentrated in ring shape at the outer part of grown crystals, and this anomaly was illustrated by modeling the mechanism of gas-bubble entrapment according to the melt flow pattern in the crucible. And this mechanism was also encertained by observation of solid-liquid interface shape of grown crystals. The optimal condition for good quality crystals was known that the solid-liquid interface shape was slightly concave.

  • PDF

Holographic Polymer-Dispersed Liquid Crystals and Polymeric Photonic Crystals Formed by Holographic Photolithography

  • Kyu Thein;Meng Scott;Duran Hatice;Nanjundiah Kumar;Yandek Gregory R.
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.155-165
    • /
    • 2006
  • The present article describes the experimental and theoretical observations on the formation of holographic, polymer-dispersed, liquid crystals and electrically switchable, photonic crystals. A phase diagram of the starting mixture of nematic liquid crystal and photo-reactive triacrylate monomer was established by means of differential scanning calorimetry (DSC) and cloud point measurement. Photolithographic patterns were imprinted on the starting mixture of LC/triacrylate via multi-beam interference. A similar study was extended to a dendrimer/photocurative mixture as well as to a single component system (tetra-acrylate). Theoretical modeling and numerical simulation were carried out based on the combination of Flory-Huggins free energy of mixing and Maier-Saupe free energy of nematic ordering. The combined free energy densities were incorporated into the time-dependent Ginzburg-Landau (Model C) equations coupled with the photopolymerization rate equation to elucidate the spatio-temporal structure growth. The 2-D photonic structures thus simulated were consistent with the experimental observations. Furthermore, 3-D simulation was performed to guide the fabrication of assorted photonic crystals under various beam-geometries. Electro-optical performance such as diffraction efficiency was evaluated during the pattern photopolymerization process and also as a function of driving voltage.

'Warm-up' of a ${\pi}-cell$ Liquid Crystal Device

  • Lee, Gi-Dong;Bos, Philip J.;Ahn, Seon-Hong;Lee, Kun-Jong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1096-1100
    • /
    • 2003
  • A fast Q-tensor method, which can model the defect dynamics in a liquid crystal director field is presented. The method is used to model the defect dynamics occurring during the "warm-up" of a ${\pi}-cell$ device.

  • PDF