• 제목/요약/키워드: modeling error

검색결과 1,632건 처리시간 0.028초

시스템의 불확실성에 대한 신경망 모델을 통한 강인한 비선형 제어 (A Robust Nonlinear Control Using the Neural Network Model on System Uncertainty)

  • 이수영;정명진
    • 대한전기학회논문지
    • /
    • 제43권5호
    • /
    • pp.838-847
    • /
    • 1994
  • Although there is an analytical proof of modeling capability of the neural network, the convergency error in nonlinearity modeling is inevitable, since the steepest descent based practical larning algorithms do not guarantee the convergency of modeling error. Therefore, it is difficult to apply the neural network to control system in critical environments under an on-line learning scheme. Although the convergency of modeling error of a neural network is not guatranteed in the practical learning algorithms, the convergency, or boundedness of tracking error of the control system can be achieved if a proper feedback control law is combined with the neural network model to solve the problem of modeling error. In this paper, the neural network is introduced for compensating a system uncertainty to control a nonlinear dynamic system. And for suppressing inevitable modeling error of the neural network, an iterative neural network learning control algorithm is proposed as a virtual on-line realization of the Adaptive Variable Structure Controller. The efficiency of the proposed control scheme is verified from computer simulation on dynamics control of a 2 link robot manipulator.

  • PDF

CNC 공작기계 스핀들 유닛의 5자유도 열변형 오차측정 및 모델링 기술 (Thermal Error Measurement and Modeling Techniques for the 5 Degree of Freedom(DOF) Spindle Unit Drifts in CNC Machine Tools)

  • 박희재;이석원;권혁동
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1343-1351
    • /
    • 2000
  • Thermally induced errors have been significant factors affecting the machine tool accuracy. In this paper, the spindle thermal error has been focused, where the 5 degree of freedom thermal error components are considered. An effective measurement system has been devised for the 5 DOF thermal errors, consisting of gap sensors and thermocouples around the micro-computer interfaced environment. Several thermal error modeling techniques are also implemented for the thermal error prediction: multiple linear regression, neural network and system identification methods, etc. The performance of the thermal error modeling techniques is evaluated and compared, giving the system identification method as the optimum model having the least deviation. The developed system for the thermal error measurement and modeling was practically applied to a CNC machining center, and the spindle thermal errors were effectively compensated around the micro computer-machine tool interfaced networks. The machine tool accuracy was improved about 4-5 times typically.

A Study on Improving the predict accuracy rate of Hybrid Model Technique Using Error Pattern Modeling : Using Logistic Regression and Discriminant Analysis

  • Cho, Yong-Jun;Hur, Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.269-278
    • /
    • 2006
  • This paper presents the new hybrid data mining technique using error pattern, modeling of improving classification accuracy. The proposed method improves classification accuracy by combining two different supervised learning methods. The main algorithm generates error pattern modeling between the two supervised learning methods(ex: Neural Networks, Decision Tree, Logistic Regression and so on.) The Proposed modeling method has been applied to the simulation of 10,000 data sets generated by Normal and exponential random distribution. The simulation results show that the performance of proposed method is superior to the existing methods like Logistic regression and Discriminant analysis.

  • PDF

전기자동차 배터리 모델링 및 파라미터 최적화 기법 연구 (The Research on the Modeling and Parameter Optimization of the EV Battery)

  • 김일송
    • 전력전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.227-234
    • /
    • 2020
  • This paper presents the methods for the modeling and parameter optimization of the electric vehicle battery. The state variables of the battery are defined, and the test methods for battery parameters are presented. The state-space equation, which consists of four state variables, and the output equation, which is a combination of to-be-determined parameters, are shown. The parameter optimization method is the key point of this study. The least square of the modeling error can be used as an initial value of the multivariable function. It is equivalent to find the minimum value of the error function to obtain optimal parameters from multivariable function. The SIMULINK model is presented, and the 10-hour full operational range test results are shown to verify the performance of the model. The modeling error for 25 degrees is approximately 1% for full operational ranges. The comments to enhance modeling accuracy are shown in the conclusion.

A posteriori error estimator for hierarchical models for elastic bodies with thin domain

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.513-529
    • /
    • 1999
  • A concept of hierarchical modeling, the newest modeling technology, has been introduced in early 1990's. This new technology has a great potential to advance the capabilities of current computational mechanics. A first step to implement this concept is to construct hierarchical models, a family of mathematical models sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics in their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-, plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical, analysis of hierarchical models, two kinds of errors prevail, the modeling error and the numerical approximation error. To ensure numerical simulation quality, an accurate estimation of these two errors is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures is derived using the element residuals and the flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error indicators for two types of errors, in the energy norm. Compared to the classical error estimators using the flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

매개변수 사전 오차 모델링 기법을 이용한 SAR 요동측정 알고리즘 (Motion Sensing Algorithm for SAR Image Using Pre-Parametric Error Modeling)

  • 박우정;박용곤종;이수정;박찬국;송종화;배창식
    • 한국항공우주학회지
    • /
    • 제47권8호
    • /
    • pp.566-573
    • /
    • 2019
  • 항공 SAR에서 고품질의 영상을 얻기 위해서는 영상 획득 구간에서 항공기의 요동을 정확히 측정하여야 한다. 특히 요동측정을 할 때 상대적 위치오차 및 불연속성 오차를 줄여야 한다. 이를 해결하기 위해 본 논문에서는 합성 개구 레이더(SAR)에서 실시간으로 요동측정을 하는 매개변수 사전 오차 모델링 방법(P-PEM, Pre-Parametric Error Modeling)을 제안한다. P-PEM은 기존에 본 연구진에서 제안한 항법오차를 다항식으로 모델링하여 추정하는 매개변수 오차 모델링 기법(PEM, Parametric Error Modeling)에서 확장된 기법이다. PEM은 IMU에 의한 INS 오차를 짧은 시간 동안 다항식이라 가정하여 모델링하는 요동측정기법이다. 반면, P-PEM은 다항식 오차 모델의 계수를 미리 추정하고 영상촬영단계에서 사용한다. 시뮬레이션 결과, P-PEM을 적용하면 실시간으로 불연속성 오차를 제거한 요동측정이 가능함을 확인하였다.

Minimization of Modeling Error of the Linear Motion System with Voice Coil Actuator

  • Hwang, Jin-Dong;Kwak, Yong-Kil;Jung, Hong-Jung;Kim, Sun-Ho;Ahn, Jung-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.54-61
    • /
    • 2008
  • This paper presents a method for reducing modelling error in the linear motion system with voicecoil actuator (VCA). A model of linear motion system composed of a mechanism and control was prepared to verify the proposed method. In modeling of the system, the damping coefficient obtained experimentally is applied to the model in order to consider the effect of the viscous friction for the moving part in VCA. The response velocity of VCA for duty ratio of PWM signal was analyzed in the time domain. Consequently, the relation between velocity and duty ratio was obtained. The result from the experiment showed an error of 9% when compared with that of simulation. In order to reduce the modeling error, impedance variation according to input frequency was analyzed, and equivalent impedance with multi-frequency was applied to the control part. As a result, the modeling error decreased to 5%.

후향계단 유동장 축약모델링 기법 (Reduced Order Modeling of Backward-Facing-Step Flow Field)

  • 이진익;이은석
    • 한국항공우주학회지
    • /
    • 제40권10호
    • /
    • pp.833-839
    • /
    • 2012
  • 본 논문에서는 후향계단 유동장 모델링 및 복원오차를 분석한다. 유동장의 밀도를 POD(Proper Orthogonal Decomposition) 기법을 통해 공간모드와 시간모드로 추출하여 수학적으로 모델링한다. 모델링 오차를 정립하여 유동에너지와 오차 사이의 관계를 정리한다. 모델링 오차를 시간영역 뿐만 아니라 주파수 영역에서의 분석을 통하여 제어측면에서 오차의 한계를 규정한다.

A POSTERIORI ERROR ESTIMATOR FOR HIERARCHICAL MODELS FOR ELASTIC BODIES WITH THIN DOMAIN

  • Cho, Jin-Rae;J. Tinsley Oden
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제3권1호
    • /
    • pp.16-33
    • /
    • 2002
  • A concept of hierarchical modeling, the newest modeling technology. has been introduced early In 1990. This nu technology has a goat potential to advance the capabilities of current computational mechanics. A first step to Implement this concept is to construct hierarchical models, a family of mathematical models which are sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics In their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-. plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical analysis of hierarchical models, two kinds of errors prevail: the modeling error and the numerical approximation errors. To ensure numerical simulation quality, an accurate estimation of these two errors Is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures Is derived using element residuals and flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error Indicators for two types of errors, in the energy norm. Comparing to the classical error estimators using flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

  • PDF