• Title/Summary/Keyword: modeling & simulation (M&S)

Search Result 427, Processing Time 0.027 seconds

Weapon Systems for the implementation of an effective Modeling & Simulation on the use of computational fluid dynamics research (무기체계의 효과적인 모델링 및 시뮬레이션 구현을 위한 전산유체역학 활용 연구)

  • Lee, Pil-Jung;Lee, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3492-3496
    • /
    • 2011
  • In Korea Defence in the field of modeling and simulation quite low compared to international levels, and Research & Development and acquisition of weapon systems do not address the reliability in the area is a Free. Thus, in this study using computational fluid dynamics engineering in terms of M & S and the applicability of the present, Future research and development of an effective weapons system acquisition would like to take advantage.

A Study on Optimizing Zinc-Air Batteries Using M&S (M&S를 이용한 아연-공기전지 최적화 연구)

  • Lee, Jae-In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.688-693
    • /
    • 2014
  • Zinc-air batteries which has various merits in the aspect of energy density, power density and price relative to lithium based second batteries were extensively investigated recently. To develope and optimize these zinc-air batteries, the method of M&S is so efficient solution to reduce price and time. Therefore, in this paper, after executing mathematical modeling, I optimized the zinc-air battery through the simulation and make bolt-cell and discharge it to compare with simulation result. As a result, predictions are well agreed with experimental results.

FMI based Real-time CPS Distributed Simulation Framework using OMG DDS middleware (OMG DDS 미들웨어를 이용한 FMI기반 실시간 CPS 분산 시뮬레이션 프레임워크)

  • Hong, Seokjoon;Joe, Inwhee;Kim, Wontae
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.6-13
    • /
    • 2018
  • To develop highly dependable CPS, M&S(modeling and simulation) is very important. It is not easy to model any CPS whole system in a single simulation tool because each simulation tool is optimized for modeling each different part of the CPS. The FMI is the standard for M&S between different simulation tools. The DDS is a communication middleware suitable for large-scale real-time data transmission. In this paper, we proposed FMI based CPS real-time distributed simulaton framework using DDS. To evaluate the performance of the proposed framework, we performed distributed simulation using IEEE HLA/RTI and OMG DDS middleware and measured and compared the execution time of the entire simulation. From the simulation results, we can confirm that the simulation execution time using DDS is at least 1.14 times faster compared to execution time using HLA/RTI.

An Ontology-based Cloud Storage for Reusing Weapon Models (무기체계 모델 재사용을 위한 온톨로지 기반 클라우드 저장소 연구)

  • Kim, Tae-Sup;Park, Chan-Jong;Kim, Hyun-Hwi;Lee, Kang-Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.35-42
    • /
    • 2012
  • Defense Modeling and Simulation aims to provide a computerized war environment where we can analyze weapon systems realistically. As we invest significant efforts to represent weapon systems and their operational environments on the computer, there has been an increasing need to reuse predefined weapon models. In this paper, we introduce OB-Cloud (Ontology-Based Cloud storage) to utilize predefined weapon models. OB-Cloud has been implemented as a repository for OpenSIM (Open Simulation engine for Interoperable Models), which is an integrated simulation environment for aiding weapons effectiveness analysis, under the development of our research team. OB-Cloud uses weapon ontology and thesaurus dictionaries to provide semantic search for reusable models. In this paper, we present repository services of OB-Cloud, including registration of weapon models and semantic retrieval of similar models, and illustrate how we can improve reusability of weapon models, through an example.

A Study on the Battle Management Language Application for the C4I and M&S Interoperation in ROK Forces (한국군에서의 C4I체계와 M&S 상호운용을 위한 BML 적용에 관한 연구)

  • Jung, Whan-Sik;Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.91-101
    • /
    • 2010
  • Battle Management Language (BML) is defined as an unambiguous language intended to provide for command and control of simulated and live forces in U.S. It has been developed to connect between command and control system and Modeling & Simulation in the U.S., including NATO M&S Working Group. Its goal is to provide situational awareness and offer a path forward for interoperation of C2 systems and simulations. This study deals with BML development in U.S. that begins from army and is being expanded in multinational environment. It also proposes the BML application for C4I and M&S interoperation in the Korean forces. Recent developments of BML in U.S. have shown the potential for interoperation between C2 systems and simulations in a coalition environment. Finally, this study proposes a general BML application method and shows the example of its application to the Korea Joint Command Control System (KJCCS). It provides an architecture and a milestone for BML application in the Korean forces.

Detection Performance Analysis of the Telescope considering Pointing Angle Command Error (지향각 명령 오차를 고려한 망원경 탐지 성능 분석)

  • Lee, Hojin;Lee, Sangwook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.237-243
    • /
    • 2017
  • In this paper, the detection performance of the electro-optical telescopes which observes and surveils space objects including artificial satellites, is analyzed. To perform the Modeling & Simulation(M&S) based analysis, satellite orbit model, telescope model, and the atmospheric model are constructed and a detection scenario observing the satellite is organized. Based on the organized scenario, pointing accuracy is analyzed according to the Field of View(FOV), which is one of the key factors of the telescope, considering pointing angle command error. In accordance with the preceding result, detection possibility according to the pixel-count of the detector and the FOV of the telescope is analyzed by discerning detection by Signal-to-Noise Ratio(SNR). The result shows that pointing accuracy increases with larger FOV, whereas the detection probability increases with smaller FOV and higher pixel-count. Therefore, major specification of the telescope such as FOV and pixel-count should be determined considering the result of M&S based analysis performed in this paper and the operational circumstances.

Study on Automation for Verification of Naval Ship's Operational Scenarios using Simulation: Focusing on Crew Messroom Case (시뮬레이션을 이용한 함정 운용 시나리오 검증 자동화 연구: 승조원을 고려한 Crew Messroom 운용성 검증을 중심으로)

  • Oh, Dae-Kyun;Lee, Dong-Kun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.24-30
    • /
    • 2013
  • The Korea Navy has been making constant efforts to apply M&S (modeling and simulation) to naval ship development, and the generalization of M&S for ship development is a trend. M&S for ship design is used for the V&V (verification and validation) of its design and operation, including design verification and ergonomic design that considers the crew using the Naval Ship Product Model. In addition, many parts of this M&S are repeatedly accomplished regardless of the kinds of ships. This study aims to standardize M&S, which repeatedly applies similar verifications for operation scenarios. A congestion assessment simulation for the major spaces of ships was the subject of the standardization based on the leading research results of various researchers, and a simulation automation solution was suggested. An information model using XML was proposed through the simulation automation concept, and a prototype system based on it was implemented. The usability was shown through a case study that verified the operability performance of the crew messroom.

A study on the Modeling & Simulation of Weapon Systems Application using the Computation Fluid Dynamics (전산유체역학을 이용한 무기체계의 모델링 및 시뮬레이션 적용에 관한 연구)

  • Lee, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2014
  • This study, the reliability of weapon systems acquisition and research and development in order to increase the effect of the modeling and simulation method has been studied using computational fluid dynamics. Weapon system acquisition, Test & Evaluation for use in the modeling and simulation can reduce the reliability of the time and cost savings and possible predictions and verification, and can provide useful data. However, the current weapon system acquisition and active use of modeling and simulation and verification do not even use the software are restricted. In this study, using computational fluid dynamics (CFD) modeling and simulation using the GAMBIT and FLUENT modeling and simulation was performed. The result is better than previous research results were confirmed in future weapon systems acquisition and research and development are expected to be actively used.

Current Status and Applications of Integrated Safety Assessment and Simulation Code System for ISA

  • Izquierdo, J.M.;Hortal, J.;Sanchez Perea, M.;Melendez, E.;Queral, C.;Rivas-Lewicky, J.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.295-305
    • /
    • 2017
  • This paper reviews current status of the unified approach known as integrated safety assessment (ISA), as well as the associated SCAIS (simulation codes system for ISA) computer platform. These constitute a proposal, which is the result of collaborative action among the Nuclear Safety Council (CSN), University of Madrid (UPM), and NFQ Solutions S.L, aiming to allow independent regulatory verification of industry quantitative risk assessments. The content elaborates on discussions of the classical treatment of time in conventional probabilistic safety assessment (PSA) sequences and states important conclusions that can be used to avoid systematic and unacceptable underestimation of the failure exceedance frequencies. The unified ISA method meets this challenge by coupling deterministic and probabilistic mutual influences. The feasibility of the approach is illustrated with some examples of its application to a real size plant.