• Title/Summary/Keyword: model-based systems engineering

Search Result 5,469, Processing Time 0.038 seconds

Performance of hybrid modulation for digital IoT doorlock system with color grid (컬러그리드기반 디지털 IoT 도어락 시스템을 위한 혼합변조의 성능)

  • Lee, Sun-Yui;Sun, Young-Ghyu;Sim, Issac;Hwang, Yu-Min;Yoon, Sung-Hoon;Cha, Jae-Sang;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.91-97
    • /
    • 2018
  • This paper presents implementation possibilities of digital IoT doorlock systems via VLC(Visible Light Communication)'s color grid. The color grid-based VLC modulation scheme which are discussed in this paper utilize the straightness of light and abundant frequency resources which are the properties of the light. Performance results in this paper are compared to that of conventional modulations with Bit Error Rate (BER) and Signal to Noise Ratio (SNR) simulations. With respect to a channel model, the proposed modulation schemes select the nearest Line Of Sight (LOS) except Non Line Of Sight (NLOS). Experiments in this paper show error rates of received symbols by changing power dB at a distance of 3m between Tx and Rx in an indoor environment. Through performance results and experiments, this paper demonstrates superiority of the proposed color grid-based modulation schemes.

Fault Diagnosis of Bearing Based on Convolutional Neural Network Using Multi-Domain Features

  • Shao, Xiaorui;Wang, Lijiang;Kim, Chang Soo;Ra, Ilkyeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1610-1629
    • /
    • 2021
  • Failures frequently occurred in manufacturing machines due to complex and changeable manufacturing environments, increasing the downtime and maintenance costs. This manuscript develops a novel deep learning-based method named Multi-Domain Convolutional Neural Network (MDCNN) to deal with this challenging task with vibration signals. The proposed MDCNN consists of time-domain, frequency-domain, and statistical-domain feature channels. The Time-domain channel is to model the hidden patterns of signals in the time domain. The frequency-domain channel uses Discrete Wavelet Transformation (DWT) to obtain the rich feature representations of signals in the frequency domain. The statistic-domain channel contains six statistical variables, which is to reflect the signals' macro statistical-domain features, respectively. Firstly, in the proposed MDCNN, time-domain and frequency-domain channels are processed by CNN individually with various filters. Secondly, the CNN extracted features from time, and frequency domains are merged as time-frequency features. Lastly, time-frequency domain features are fused with six statistical variables as the comprehensive features for identifying the fault. Thereby, the proposed method could make full use of those three domain-features for fault diagnosis while keeping high distinguishability due to CNN's utilization. The authors designed massive experiments with 10-folder cross-validation technology to validate the proposed method's effectiveness on the CWRU bearing data set. The experimental results are calculated by ten-time averaged accuracy. They have confirmed that the proposed MDCNN could intelligently, accurately, and timely detect the fault under the complex manufacturing environments, whose accuracy is nearly 100%.

A quantitative assessment method of network information security vulnerability detection risk based on the meta feature system of network security data

  • Lin, Weiwei;Yang, Chaofan;Zhang, Zeqing;Xue, Xingsi;Haga, Reiko
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4531-4544
    • /
    • 2021
  • Because the traditional network information security vulnerability risk assessment method does not set the weight, it is easy for security personnel to fail to evaluate the value of information security vulnerability risk according to the calculation value of network centrality, resulting in poor evaluation effect. Therefore, based on the network security data element feature system, this study designed a quantitative assessment method of network information security vulnerability detection risk under single transmission state. In the case of single transmission state, the multi-dimensional analysis of network information security vulnerability is carried out by using the analysis model. On this basis, the weight is set, and the intrinsic attribute value of information security vulnerability is quantified by using the qualitative method. In order to comprehensively evaluate information security vulnerability, the efficacy coefficient method is used to transform information security vulnerability associated risk, and the information security vulnerability risk value is obtained, so as to realize the quantitative evaluation of network information security vulnerability detection under single transmission state. The calculated values of network centrality of the traditional method and the proposed method are tested respectively, and the evaluation of the two methods is evaluated according to the calculated results. The experimental results show that the proposed method can be used to calculate the network centrality value in the complex information security vulnerability space network, and the output evaluation result has a high signal-to-noise ratio, and the evaluation effect is obviously better than the traditional method.

A Specification-Based Methodology for Data Collection in Artificial Intelligence System (명세 기반 인공지능 학습 데이터 수집 방법)

  • Kim, Donggi;Choi, Byunggi;Lee, Jaeho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.479-488
    • /
    • 2022
  • In recent years, with the rapid development of machine learning technology, research utilizing machine learning has been actively conducted in fields such as cognition, reasoning and judgment, and action among various technologies constituting intelligent systems. In order to utilize this machine learning, it is indispensable to collect data for learning. However, the types of data generated vary according to the environment in which the data is generated, and the types and forms of data required are different depending on the learning model to be used for machine learning. Due to this, there is a problem that the existing data collection method cannot be reused in a new environment, and a specialized data collection module must be developed each time. In this paper, we propose a specification-based methology for data collection in artificial intelligence system to solve the above problems, ensure the reusability of the data collection method according to the data collection environment, and automate the implementation of the data collection function.

Predicting Long-Term Deformation of Road Foundations under Repeated Traffic Loadings (반복 교통하중에 의한 도로지반의 장기변형 예측)

  • Park, Seong-Wan;An, Dong Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.505-512
    • /
    • 2010
  • Generally, the repeated traffic loading condition should be considered to predict the long-term deformation on road foundations or foundation systems. However, it is not easy to estimate long-term deformation on multi-layered system like roads and railways. For more quantitative analysis, mechanistic-empirical approach requires proper analytical tool, material's model, and material properties of foundation geomaterials under both traffic and environmental loadings. In this study, therefore, laboratory data from the long-term repeated load triaxial tests were used to predict accumulated deformation on pavement foundations and the results were analyzed based on the nonlinear models and stress state considered. All these results are presented and verified on laboratory based scale using the finite element analysis with the deformation characteristics of foundation geomaterials at various stress states.

Controller Design and Validation of Radial Active Magnetic Bearing Systems Considering Dynamical Changes Due To Rotational Speeds (회전속도에 따른 동역학적 변화를 고려한 반경방향 능동 자기베어링 시스템의 제어기 설계 및 검증)

  • Jeong, Jin Hong;Yoo, Seong Yeol;Noh, Myounggyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.925-932
    • /
    • 2014
  • If a rotor possesses a high gyroscopic coupling or the running speed is high, the dynamical changes in the rotor become prominent. When active magnetic bearings are used to support such rotors, it is necessary for the bearing controller to take these dynamical changes into consideration. Independent-axis controllers, which are the most commonly used, modulate the bearing force solely based on the sensor output of the same axis. However, this type of controller has difficulties in overcoming the dynamical changes. On the other hand, mixed-axis controllers transform the sensor output into components corresponding to the vibrational modes. A separate controller can then be designed for each vibrational mode. In this way, the controller can be designed based on the dynamics of the rotor. In this paper, we describe a design process for a mixed-axis controller that uses a detailed mathematical model of the system. The performance of the controller is evaluated based on the ISO sensitivity requirements and unbalance response, while considering the change in the system dynamics due to the running speed.

Analysis of Resistance Performance of a Ship having a Large Attitude based on CFD (CFD에 의한 자세변화가 큰 선박의 저항성능 해석)

  • Kim, Hyun-Soo;Park, Dong-Woo;Yang, Young-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.961-967
    • /
    • 2019
  • This research presents an efficient method based on computational fluid dynamics (CFD) for estimating the resistance performance of a ship with a large settlement amount and a dynamic trim. The settlement of the inviscid flow analysis and the results of dynamic trim were used to set a large attitude for the ship prior to performing a viscous flow analysis; a viscous flow analysis was subsequently performed by Dynamic Fluid Body Interaction (DFBI). This method is termed as method I, in which a simple grating system can be used without employing the overset mesh technique by setting many attitudes before interpretation. Thus, method I is advantageous in reducing calculation time and improving calculation accuracy. The viscous flow analysis was performed using a commercial CFD code STAR-CCM+. Compared with the final convergence result, the first viscous flow analysis result of method I exhibited a variation of less than 1 % of resistance. The result was obtained by changing the gratings each time an attitude is changed at each calculation stage, based on the DFBI method provided to STAR-CCM+ using a simple grating system, which is not a superposed grating. This method is termed as method II. Compared with method II of resistance, method I exhibited a dif erence of 0.03-0.6 % for linear velocity. The results of method I were confirmed to be qualitatively and quantitatively appropriate through comparison with several trillion simulations.

Development of an augmented reality based underground facility management system using BIM information (BIM을 활용한 증강현실 기반 지하시설물 관리 시스템 개발에 관한 연구)

  • Shin, Jaeseop;An, Songkang;Song, Jeongwoog
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.525-538
    • /
    • 2022
  • In Korea, safety accidents are continuously occurring due to the aging of underground facilities and lack of systematic management. Moreover, although the underground space is continuously being developed, the current status information is not clearly recorded and managed, so there is a limit to the systematic management of underground facilities. Therefore, this study developed an augmented reality-based system that can effectively maintain and manage underground facilities that are difficult to manage because they are located underground. In order to develop an augmented reality-based underground facility management system, three essential requirements, 'precise localization', 'use of BIM information', and 'ensure usability' were derived and reflected in the system. By utilizing Broadcast-RTK, the positional precision was secured to cm level, and the configuration and attribute information of the BIM was converted into the IFC format to construct a system that could be implemented in augmented reality. It developed an application that can optimize usability. Finally, through simulation, the configuration and attribute information of structures and mechanical systems constituting underground facilities were implemented in augmented reality. In addition, it was confirmed that the accurate and highly consistent augmented reality system works even in harsh environment (near high-rise building).

An Analysis of Typological Developing Process of Urban Information Systems (도시정보시스템(UIS)의 유형별 발전과정 분석)

  • Kim, K.J.;Fukui, H.;Jo, M.H.;Lee, H.Y.
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.2
    • /
    • pp.17-26
    • /
    • 2001
  • The Purpose of this study is to provide an effective way of developing GIS to UIS at the local level. For this purpose, the study typologically reviews the developing processes of UIS and utilizes a case study as research method. As the case, the study selects three types of UIS such as FM based UIS(Kwacheon), Urban Planning based UIS(Cheungju), and LIS based UIS(Taegu Nam-Gu). Based on these three UISs, the study concludes as follows. First, the developing process of GIS to UIS began with isolated approach through integrated model and finally to internet UIS. Second, UISs follows similar processes to that of GIS construction. Third, local governments focus on the development of FM based UIS of which construction budget is financed by the central government. Based on these findings, the study provides policy alternatives for the successful construction of UIS.

  • PDF

Analysis of Public System's Quality and User Behavior Using PLS-MGA Methodology : An Institutional Perspective (PLS-MGA 방법론을 활용한 제도론적 관점에서의 공공제도 품질과 사용자 행태의 분석)

  • Lee, Jae Yul;Hwang, Seung-June
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.78-91
    • /
    • 2017
  • In this study, we conducted a comparative study on user's perception and behavior on public system service (PSS) using institutionalism theory and MGA (multi-group analysis) methodology. In particular, this study focuses on how institutional isomorphism is applied to public system services and how MGA can be implemented correctly in a variance based SEM (structural equation model) such as PLS (partial least square). A data set of 496 effective responses was collected from pubic system users and an empirical research was conducted using three segmented models categorized by public proximity theory (public firms = 113, government contractors = 210, private contractors = 173). For rigorous group comparisons, each model was estimated by the same indicators and approaches. PLS-SEM was used in testing research hypotheses, followed by parametric and non-parametric PLS-MGA procedures in testing categorical moderation effects. This study applied novel procedures for testing composite measurement invariance prior to multi-group comparisons. The following main results and implications are drawn : 1) Partial measurement invariance was established. Multi-group analysis can be done by decomposed models although data can not be pooled for one integrated model. 2) Multi-group analysis using various approaches showed that proximity to public sphere moderated some hypothesized paths from quality dimensions to user satisfaction, which means that categorical moderating effects were partially supported. 3) Careful attention should be given to the selection of statistical test methods and the interpretation of the results of multi-group analysis, taking into account the different outcomes of the PLS-MGA test methods and the low statistical power of the moderating effect. It is necessary to use various methods such as comparing the difference in the path coefficient significance and the significance of the path coefficient difference between the groups. 4) Substantial differences in the perceptions and behaviors of PSS users existed according to proximity to public sphere, including the significance of path coefficients, mediation and categorical moderation effects. 5) The paper also provides detailed analysis and implication from a new institutional perspective. This study using a novel and appropriate methodology for performing group comparisons would be useful for researchers interested in comparative studies employing institutionalism theory and PLS-SEM multi-group analysis technique.