지능형 사물인터넷인 AIoT는 IoT 디바이스가 측정한 데이터를 수집하고 머신러닝 기술을 적용해 예측 모델을 만들어 활용하는 기술을 의미한다. AIoT 기술 교육을 위한 기존 연구에서는 교육용 AIoT 플랫폼 구축하고 사용법을 교육하는 데 초점을 맞추었다. 그러나, IoT 디바이스가 측정한 데이터로부터 머신러닝 모델이 자동 생성되고 활용되는 과정을 교육하는 사례 연구는 부족하였다. 본 논문에서는 AIoT 기술 교육을 위한 머신러닝 모델 활용 사례를 개발하였다. 본 논문에서 개발한 사례는 AIoT 디바이스의 데이터 수집, 데이터 전처리, 머신러닝 모델 자동 생성, 모델별 정확도 산출 및 유효 모델 결정, 유효 모델을 활용한 데이터 예측 단계들로 구성되었다. 본 논문에서는 AIoT 디바이스의 센서들이 서로 다른 범위의 값들을 측정하는 것을 고려하였고, 이에 따른 데이터 전처리 사례를 제시하였다. 또한 여러 머신러닝 모델들을 자동 생성하고 이 모델들 중 정확도가 높은 유효모델을 결정하여, AIoT 디바이스가 어떤 정보를 예측할 수 있는 가를 스스로 결정하는 사례를 개발하였다. 개발한 사례를 적용하면, AIoT를 활용한 예측기반 사물 제어와 같은 AIoT 활용 교육 콘텐츠를 다양하게 개발할 수 있다.
최근 기존 전시 공간 내에 유비쿼터스 환경이 구축되면서, 관객과의 상호작용을 통해 전시 효과를 배가할 수 있는 인터랙티브 전시에 많은 사람들의 관심이 집중되고 있다. 이러한 인터랙티브 전시가 보다 고도화되기 위해서는 전시물에 대한 다양한 관객 반응을 측정하고, 이를 통해 대상 관객이 어떤 감정을 느끼는지 예측할 수 있는 적절한 의사결정지원 모형이 요구된다. 이러한 배경에서 본 연구는 인터랙티브 전시 공간 내에서 수집 가능한 다양한 관객 반응 중 얼굴표정의 변화를 이용하여, 관객의 감정을 추론, 판단하는 지능형 모형을 제시한다. 본 연구에서 제시하는 모형은 무자극 상태의 관객의 표정과 자극이 주어졌을 때 관객의 표정이 어떻게 변화하는지 변화량을 측정하여, 이를 기반으로 인공신경망 기법을 이용해 해당 관객의 감정을 판단하는 모형이다. 이 때, 제안모형의 감정 분류체계로는 간결하면서도 실무에 적용이 용이하여 그간 기존 문헌에서 널리 활용되어 온 매력-각성(Valence-Arousal) 모형을 사용한다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 2011 서울 DMC 컬쳐 오픈 행사에 참여하여, 일반인을 대상으로 얼굴 표정 변화 데이터를 수집하고, 이들이 느끼는 감정 상태를 설문조사하였다. 그리고 나서, 이 자료들을 대상으로 본 연구에서 제안하는 모형을 적용해 보고, 제안모형이 비교모형으로 설정된 통계기반 예측모형에 비해 더 우수한 성과를 보이는지 확인해 보았다. 실험 결과, 본 연구에서 제시하는 모형이 비교 모형인 중회귀분석 모형보다 더 우수한 결과를 제공함을 확인할 수 있었다. 본 연구를 통하여 구축된 관객 감정 판단 모형을 실제 전시장에서 활용한다면 전시물을 관람하는 관객의 반응에 따라 시의적절하면서도 효과적인 대응이 가능하기 때문에, 관객의 몰입과 만족을 보다 증대시킬 수 있을 것으로 기대된다.
본 연구는 계획된 행위이론에 근거하여 중년기 여성의 유방자가검진의도와 행위에 영향을 미치는 요인을 예측하기 위한 구조모형 연구이다. 연구대상은 중년기 여성 217명을 대상으로 1차 의도조사를 실시한 후 1개월 이내의 유방자가 검진 실천 횟수를 조사하였다. 연구결과 모형의 적합 도는 ${\chi}^2$=1246.6 (p<.001), ${\chi}^2$/df=2.72, CFI=.831, TLI=.817, RMSEA=.089이었으며, 1개월 이내 유방자가검진 실천 율은 56.2%였다. TPB 변수의 설명력은 의도에 43.9%, 행위에 10.9%로 나타났다. 주관적 규범(${\beta}$=.364, p<.001)과 지각된 행위통제(${\beta}$=.553, p<.001)가 의도에 긍정적 영향을 미쳤으며, 행위에는 행위의도(${\beta}$=.768, p<.01)가 긍정적 영향을 나타냈다. 결과적으로 본 모형은 중년여성의 유방자가검진을 설명하는데 적합한 모형이며, 중년여성의 유방자가검진행위 증진을 위한 중재프로그램 개발은 행위의도 강화에 중점을 두어야 할 것으로 판단된다.
본 연구는 기계 학습법 중 하나인 XGBoost를 이용하여 대사증후군을 인지하고 신체활동을 수행하는 집단을 예측하고자 2014년 7월부터 2015년 12월까지 시도되었다. 이에 2009-2013년 지역사회건강조사를 연구자료로 사용하였고 370,430명의 성인을 분석에 포함하였다. 본 연구의 종속변수는 대사증후군의 인지 및 신체활동 실천정도에 따른 단계로 3단계로 구분하였다:Stage 1(무인지, 무 신체활동), Stage 2(인지, 무 신체활동), and Stage 3(인지, 신체활동). 예측변수로는 5년간의 지역사회건강조사 중 공통으로 수집된 문항으로부터 161개의 특성을 선택하였다. 자료 분석을 위해 R program을 이용하여 XGBoost 알고리즘을 적용하였다. 분석 결과 정확도는 0.735 이었으며, 가장 영향을 미치는 10개의 특성은 나이, 교육수준, 체중조절시도 경험, EQ-5D 운동능력, 영양표시 확인, 개인 건강보험가입 유무, EQ-5D 일상활동, 금연광고경험 여부, 통증유무, 당뇨에 대한 보건기관의 교육 경험 순으로 확인되었다. 본 연구결과는 XGBoost가 보건의료빅데이터를 이용한 질병의 예방과 관리에 영향을 주는 요인을 확인하는데 유용한 도구임을 보여주었다. 또한, 본 연구를 통해 대사증후군에 취약한 계층을 확인하고 이를 위한 교육프로그램 개발에 도움을 줄 수 있을 것으로 보인다.
BACKGROUND: Pyrethroids (PYRs) are a widely used insecticide in agriculture and household area. In mammals, PYRs such as deltamethrin is metabolized to 3-phenoxybenzoic acid (3-PBA) in liver that is mainly excreted in urine. This study is designed to single exposure of deltamethrin to rats in a dose-dependent manner and identify the correlation between deltamethrin exposure and its metabolite (3-PBA) in urine. METHODS AND RESULTS: Exposure levels of deltamethrin were control (0 mg/kg bw), low (0.0705 mg/kg bw), medium (0.705 mg/kg bw) and high (7.05 mg/kg bw) dose. Low concentration was derived by ussing Korea predictive operator exposure model (KoPOEM). Dermal exposure persisted for 6 h, and urine specimens were collected for 24 h. The urine matrix was removed after a series of procedures and 3-PBA was analyzed by gas chromatography/mass spectrometry. CONCLUSION: There was a strong correlation ($R^2=0.83$) between the amount of oral exposure to delta me thrin and urinary levelof3-PBAexcreted. In dermal exposure groups of deltamethrin except high-dose, also there was a good correlation between urinary 3-PBA and deltamethrin exposure, but not stronger than in oral deltamethrin exposure groups. Based on these results, therefore, the amount of 3-PBA in urine can be used as a good monitoring indicator that reflexing the exposure level of deltamethrin to human body.
정량적 미생물 위해평가(Quantitative microbial risk assessment: QMRA)는 국민건강에 영향을 주는 잠재된 위해를 연구하여 식품내 존재하는 병원성미생물과 관련한 위해를 체계적으로 평가하는 것이다. 본 연구는 깁밥에서의 Staphylococcus aureus에 대한 QMRA 모델을 개발하고 이를 식품위생관리에서 이용할 수 있는 기준을 제시하여, 식품안전 분야에서의 QMRA의 필요성과 활용성을 알리기 위해서 실시하였다. QMRA 모델은 매장에서부터 최종소비에 이르기까지 4 단계로 구성되었으며, 미생물 성장모델과 조사자료 그리고 확률분포가 김밥의 최종소비에서의 S. aureus 수준을 평가하기 위하여 이용되었다. S. aureus에 대한 양-반응모델이 없는 관계로 최종 소비단계에서의 S. aureus의 오염수준을 잠재적인 위해를 결정하는데 이용하였다. 이를 위하여 5 log CFU/g이상을 잠재적 유해수준으로 가정하였으며, 시뮬레이션 결과 최종 소비되는 김밥에서 이 유해수준을 초과할 가능성은 30.7%로 나타났다. 김밥에서의 S. aureus의 오염수준은 평균 2.67 log CFU/g으로 나타났으며, 민감도 분석에서는 매장에서의 김밥 보관온도 및 시간이 가장 중요한 요인으로 결정되었다. 이러한 결과를 종합하여 볼 때 김밥 매장에서는 현실적으로 보존시간 관리가 어렵다고 한다면 보관온도를 $10^{\circ}C$ 이하로 유지하는 것이 가장 중요한 것으로 나타났다. 본 연구에서와 같이 QMRA는 식품 내 존재할 수 있는 잠재적인 위해에 영향을 미치는 인자들에 대한 평가에 이용될 수 있으며 이를 식품위생관리에 직접적으로 활용 가능한 것으로 나타났다.삼의 분석방법별 기준인 ginsenoside -Rg1과 -Re의 함량비($Rg1/Re{\Leq}3.87$)에 부합되었다.도에서 MA 저해 효과는 쑥갓>미나리>참깨의 순으로, 각각 54, 48, 29%를 나타냈다. 참깨는 20, $100{\mu}g/mL$의 농도에서처럼 가장 작은 효과를 보여줬고, 쑥갓은 50% 이상의 항산화 효과를 나타냈다. Aldehyde/Carboxylic acid assay에서는 참깨가 가장 높은 효과를 보여줬지만 Lipid MA asaay에서는 그에 비해 가장 낮은 효과를 나타냈다.안전한 수준인 것으로 판단된다. 보여진다.ificantly more inclusive. As a result of the evolution of new fibers, materials, processes and markets, we assert that a new "ENGINEERING WITH FIBERS" (EwF)(중략)web.cnu.ac.kr/~fabric이다. 제작된 멀티미디어를 실제 수업에 활용한 결과 수강생(32명)의 96.9%가 보조자료로 사용된 멀티미디어 콘텐츠자료가 실험관련 교과목 수업에 효과적이라고 응답하였고, 87.5%가 활용된 멀티미디어 콘텐츠 자료에 만족하며, 75%가 기존의 교과서와 비교하여 더 많이 활용하였다고 응답하였다. 따라서 멀티미디어 콘텐츠를 활용한 교육은 개인차에 따른 개별화 학습을 가능하게 할 뿐만 아니라 능동적인 참여를 유도하여 학습효율을 높일 수 있을 것으로 기대된다.향은 패션마케팅의 정의와 적용범위를 축소시킬 수 있는 위험을 내재한 것으로 보여진다. 그런가 하면, 많이 다루어진 주제라 할지라도 개념이나 용어가 통일되지
산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.