• 제목/요약/키워드: model-based controller

검색결과 1,938건 처리시간 0.034초

광섬유 센서와 압전 작동기를 이용한 평판의 최적 진동 제어 (Optimal Vibration Control of a Plate Using Optical Fiber Sensor and Piezoelectric Actuator)

  • 김도형;한재흥;양승만;김대현;이인;김천곤;홍창선
    • 한국소음진동공학회논문집
    • /
    • 제12권4호
    • /
    • pp.294-301
    • /
    • 2002
  • Vibration control of a plate using an optical fiber sensor and a piezoelectric actuator is considered in the present study, An aluminum plate with attached Extrinsic Fabry-Perot Interferometer (EFPI) and piezoelectric actuator is prepared for experimental investigation. Vibration level of EFPI that can represent the mechanical strain without severe distortion Is validated by forced nitration experiment. A linear time invariant system model is constructed based on the experimentally obtained frequency responses, and an optimal controller is designed for the multi-modal vibration suppression. Control performance is presented in frequency and time domains. It is found that the nitration level of the first three modes can be greatly reduced. The effect of low-pass filtering used to eliminate high frequency noise on the stability and control performance is also considered.

Unscented Kalman Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Park, Sang-Young;Abdelrahman, Mohammad;Choi, Kyu-Hong
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.36.1-36.1
    • /
    • 2008
  • An Unscented Kalman Filter(UKF) for estimation of attitude and rate of a spacecraft using only magnetometer vector measurement is presented. The dynamics used in the filter is nonlinear rotational equation which is augmented by the quaternion kinematics to construct a process model. The filter is designed for low Earth orbit satellite, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. To stabilize the attitude, linear PD controller is applied and the actuator is assumed to be thruster. A Monte-Carlo simulation has been done to guarantee the stability of the filter performance to the various initial conditions. The UKF performance is compared to that of EKF and it reveals that UKF outperforms EKF.

  • PDF

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • 제16권2호
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

무인 항공기의 함상 자동 착륙을 위한 유도제어 시스템 설계 (Guidance and Control System Design for Automatic Carrier Landing of a UAV)

  • 구소연;이동우;김기준;라충길;김승균;석진영
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1085-1091
    • /
    • 2014
  • This paper presents the guidance and control design for automatic carrier landing of a UAV (Unmanned Aerial Vehicle). Differently from automatic landing on a runway on the ground, the motion of a carrier deck is not fixed and affected by external factors such as ship movement and sea state. For this reason, robust guidance/control law is required for safe shipboard landing by taking the relative geometry between the UAV and the carrier deck into account. In this work, linear quadratic optimal controller and longitudinal/lateral trajectory tracking guidance algorithm are developed based on a linear UAV model. The feasibility of the proposed control scheme and guidance law for the carrier landing are verified via numerical simulations using X-Plane and Matlab/simulink.

RF 모듈을 이용한 ECU 자기진단 신호의 원격 계측 (Remote Measurement for ECU Self Diagnostic Signal by RF Module)

  • 정진호;이영춘;윤여흥;권대규;이우열;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.231-234
    • /
    • 2001
  • OBD-II regulations are already effective in many countries. The California Air Resources Board(CARB) first issued regulations in 1985 for the 1988 model year, known as OBD-I, and required the vehicle's engine management computer to warn the driver by means of a dash-mounted light if a malfunction occurred in either the oxygen sensor, the exhaust gas recirculation(EGR) valve or the evaporative emission system purge solenoid, and to store information on troubles that have no recurrent characteristics. This paper presents two methods of wireless monitoring OBD signal, which is one of the ECU output for self diagnostic measurement. RF module is used to monitor ECU's Self diagnostic signal remotely. Two kinds of measurement systems which are based on micro-controller(80C196KC) for portable detection and PC for sever are considered for receiving the RF signal. Therefore, possibility of real-time monitoring of ECU's self diagnostic signal remotely is verified on this paper.

  • PDF

An Enhanced Power Sharing Strategy for Islanded Microgrids Considering Impedance Matching for Both Real and Reactive Power

  • Lin, Liaoyuan;Guo, Qian;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.282-293
    • /
    • 2017
  • There exists a strong coupling between real and reactive power owing to the complex impedances in droop based islanded microgrids (MGs). The existing virtual impedance methods consider improvements of the impedance matching for sharing of the voltage controlled power (VCP) (reactive power for Q-V droop, and real power for P-V droop), which yields a 1-DOF (degree of freedom) tunable virtual impedance. However, a weak impedance matching for sharing of the frequency controlled power (FCP) (real power for $P-{\omega}$ droop, and reactive power for $Q-{\omega}$ droop) may result in FCP overshoots and even oscillations during load transients. This in turn results in VCP oscillations due to the strong coupling. In this paper, a 2-DOF tunable adaptive virtual impedance method considering impedance matching for both real and reactive power (IM-PQ) is proposed to improve the power sharing performance of MGs. The dynamic response is promoted by suppressing the coupled power oscillations and power overshoots while realizing accurate power sharing. In addition, the proposed power sharing controller has a better parametric adaptability. The stability and dynamic performances are analyzed with a small-signal state-space model. Simulation and experimental results are presented to investigate the validity of the proposed scheme.

중력을 이용한 병렬형 머니퓰레이터 구동부의 마찰력 보상 (Friction Force Compensation for Actuators of a Parallel Manipulator Using Gravitational Force)

  • 이세한;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.609-614
    • /
    • 2005
  • Parallel manipulators have been used for a variety of applications, including the motion simulators and mechanism for precise machining. Since the ball screws used for linear motion of legs of the Stewart-Gough type parallel manipulator provide wider contact areas than revolute joints, parallel manipulators are usually more affected by frictional forces than serial manipulators. In this research, the method for detecting the frictional forces arising in the parallel manipulator using the gravitational force is proposed. First, the reference trajectories are computed from the dynamic model of the parallel manipulator assuming that it is subject to only the gravitational force without friction. When the parallel manipulator is controlled so that the platform follows the computed reference trajectory, this control force for each leg is equal to the friction force arising in each leg. It is shown that control performance can be improved when the friction compensation based on this information is added to the controller for position control of the moving plate of a parallel manipulator.

Design and Performance Evaluation of a 3-DOF Mobile Microrobot for Micromanipulation

  • Park, Jungyul;Kim, Deok-Ho;Kim, Byungkyu;Kim, Taesung;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1268-1275
    • /
    • 2003
  • In this paper, a compact 3-DOF mobile microrobot with sub-micron resolution is presented. It has many outstanding features : it is as small as a coin ; its precision is of sub-micrometer resolution on the plane ; it has an unlimited travel range ; and it has simple and compact mechanisms and structures which can be realized at low cost. With the impact actuating mechanism, this system enable both fast coarse motion and highly precise fine motion with a pulse wave input voltage controlled. The 1 -DOF impact actuating mechanism is modeled by taking into consideration the friction between the piezoelectric actuator and base. This modeling technique is extended to simulate the motion of the 3-DOF mobile robot. In addition, experiments are conducted to verify that the simulations accurately represent the real system. The modeling and simulation results will be used to design the model-based controller for the target system. The developed system can be used as a robotic positioning device in the micromanipulation system that determines the position of micro-sized components or particles in a small space, or assemble them in the meso-scale structure.

격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어 (Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam)

  • 이근유;서진호;오명석;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

DSP(TMS320C50) 칩을 사용한 산업용 로봇의 적응-신경제어기의 실현 (Implementation of the Adaptive-Neuro Controller of Industrial Robot Using DSP(TMS320C50) Chip)

  • 김용태;정동연;한성현
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.38-47
    • /
    • 2001
  • In this paper, a new scheme of adaptive-neuro control system is presented to implement real-time control of robot manipulator using Digital Signal Processors. Digital signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of therir prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust perfor-mance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for the implementation of real-time control of robot system by the simulation and experi-ment.

  • PDF