• 제목/요약/키워드: model reference adaptive system

검색결과 317건 처리시간 0.031초

The Control of Switched Reluctance Motor using MRAS without Speed and Position Sensor

  • Park, Jung-Ku;Shin, Jae-Hwa;Han, Yoon-Seok;Kim, Young-Seok
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.768-773
    • /
    • 1998
  • The speed control of SRM(Switched Reluctance Motor) needs the accurate position and speed data of rotor. This information is generally provided by a shaft encoder or resolver. In some cases, the environment is which the motor operates may cause difficulties in maintaining the satisfactory position detection performance. Therefore, the elimination of the position and speed sensor has gained wide attention. In this paper, a new algorithm for estimation of rotor position and speed is described for the SRM drives. This method uses is nonlinear adaptive observer using the MRAS(Model Reference Adaptive System). The observer is proved by Lyapunov Stability Theory. This algorithm was implemented with a TMS320C31 DSP. Experiment results prove that the observer is able to estimate the speed and position with a little errors.

  • PDF

적응 퍼지제어기에 의한 IPMSM 드라이브의 쎈서리스 벡터제어 (Sensorless Vector Control of IPMSM Drive with Adalptive Fuzzy Controller)

  • 김중관;박병상;정동화
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권2호
    • /
    • pp.98-106
    • /
    • 2006
  • This paper proposes to position and speed control of interior Permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. Also, this paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of PMSM drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. A Gopinath observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of IPMSM, that employs a d-q rotating reference frame attached to the rotor. A Gopinath observer is implemented to compute the speed and position feedback signal. The validity of the proposed scheme is confirmed by various response characteristics.

토크를 물리량으로 가지는 적응제어 구조의 센서리스 벡터제어 (Adaptive Speed Identification for Sensorless Vector Control of Induction Motors with Torque)

  • 김도영;박철우;최병태;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.230-230
    • /
    • 2000
  • This paper describes a model reference adaptive system(MRAS) for speed control of vector-controlled induction motor without a speed sensor. The proposed approach is based on observing the instantaneous torque. The real torque is calculated by sensing stator current and estimated torque is calculated by stator current that is calculated by using estimated rotor speed. The speed estimation error is linearly proportional to error between real torque and estimated torque. The proposed feedback loop has linear component. Furthermore proposed method is robust to parameters variation. The effectiveness is verified by equation and simulation

  • PDF

신경 회로망을 이용한 BLDD 모터의 속도 적응 제어기 (Speed Control of BLDD Motor Using Neural Network based Adaptive Controller)

  • 김창균;이중휘;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.714-716
    • /
    • 1995
  • This Paper presents a novel and systematic approach to a self-learning controller. The proposed controller is built on a neural network consisting of a standard back propagation (BNN) and approxinate reasoning (AR). The fuzzy inference and knowledge representation are carried out by the neural network structure and computing, instead of logic inference. An architecture similar to that used by traditional model reference adaptive control system (MRAC) is employed.

  • PDF

CPS를 위한 모델 기반 자율 컴퓨팅 프레임워크 (Model-based Autonomic Computing Framework for Cyber-Physical Systems)

  • 강성주;전인걸;박정민;김원태
    • 대한임베디드공학회논문지
    • /
    • 제7권5호
    • /
    • pp.267-275
    • /
    • 2012
  • In this paper, we present the model-based autonomic computing framework for a cyber-physical system which provides a self-management and a self-adaptation characteristics. A development process using this framework consists of two phases: a design phase in which a developer models faults, normal status constrains, and goals of the CPS, and an operational phase in which an autonomic computing engine operates monitor-analysis-plan-execute(MAPE) cycle for managed resources of the CPS. We design a hierachical architecture for autonomic computing engines and adopt the Model Reference Adaptive Control(MRAC) as a basic feedback loop model to separate goals and resource management. According to the GroundVehicle example, we demonstrate the effectiveness of the framework.

Improved transient response design of MRACS

  • Oki, toshitaka;Shin, Seungin;Tanaka, Kanya;Shimizu, Akira;Shibata, Satoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.488-493
    • /
    • 1994
  • The global stability of model reference adaptive control system (MRACS) in the ideal case was resolved in the 1980's. Hoever the improvement of the transient, behaviour of MRACS has not been discussed sufficiently even in the ideal case. Only a few attempts have so far been made at the application of MRACS to the practical systems in contrast to the theoretical systematization. Therefore, when we consider the practical usage of MRACS it is necessary to develop an improved design scheme with respect to transient behaviour. In this paper, we propose two design schemes improving transient behaviour of MRACS by mollifying the input synthesis in the conventional design scheme of MRACS. We present a design scheme of MRACS in which we utilize the design approach of variable structure system(VSS). After describing the above design scheme, we also propose the improved design scheme in which we introduce the dead-zone decided by the magnitude of the output-error between the plant and the reference model. The effectiveness of the proposed two design schemes are shown through computer simulations. As the results, by using these methods, the convergence of the transient response is greatly improved in comparison with the conventional one.

  • PDF

Robust Sensorless Sliding Mode Flux Observer for DTC-SVM-based Drive with Inverter Nonlinearity Compensation

  • Aimad, Ahriche;Madjid, Kidouche;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.125-134
    • /
    • 2014
  • This paper presents a robust and speed-sensorless stator flux estimation for induction motor direct torque control. The proposed observer is based on sliding mode approach. Stator electrical equations are used in the rotor orientation reference frame to eliminate the observer dependence on rotor speed. Lyapunov's concept for systems stability is adopted to confine the observer gain. Furthermore, the sensitivity of the observer to parameter mismatch is recovered with an adaptation technique. The nonlinearities of the pulse width modulation voltage source inverter are estimated and compensated to enhance stability at low speeds. Therefore, a new method based on the model reference adaptive system is proposed. Simulation and experimental results are shown to verify the feasibility and effectiveness of the proposed algorithms.

A modified model reference adaptive system for the speed identification of induction motors

  • Hur, Namho;Hong, Kichul;Nam, Kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.427-431
    • /
    • 1996
  • The MRAS proposed by Schauder [8] is modified to improve robustness to the change of load torque and/or the variation of the stator resistance. The difference between the voltage and the current model is fed into the current model via proportional and integral gains. In order to generalize the MRAS, supposing that the rotor speed is time varying, we add a compensating term to the current model. It does not alter the Popov's integral inequality condition. Also, the asymptotic stability of the modified MRAS (MMRAS) is shown with the stability proof technique as in the original paper. By the simulation works, it is verified that the MMRAS obtains improved performance than the original MRAS.

  • PDF

퍼지 동조기법을 이용한 기준모델 추종 PID제어기의 설계 (Design of Model Following PID Controller Using Fuzzy Tuner)

  • 홍혁기;문동욱;김낙교;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.621-623
    • /
    • 1999
  • In this paper, Model following PID control system, which is combined PID controller with Model Reference Adaptive Controller, is proposed. To decrease complex and much calculation which is produced in tuning process, the tuning method of parameter with fuzzy algorithm is introduced. Fuzzy algorithm isn't used in the form of controller generally much used, but tuner. Experimental results show that proposed controller has the PID parameter be tuned by fuzzy algorithm. Therefore, We expect model following PID to be operated in the real-time control.

  • PDF

순방향 링크의 CDMA통신 시스템에 적용 가능한 적응 MMSE 레이크 수신기 (A Study on Adaptive MMSE RAKE Detector for Forward-link CDMA Communication Systems)

  • 안태기;이병섭
    • 한국통신학회논문지
    • /
    • 제24권9A호
    • /
    • pp.1265-1275
    • /
    • 1999
  • CDMA 통신 시스템에서 적응 MMSE 수신기는 다중접속간섭을 제거하는데 사용될 수 있다. 그러나 일반적인 적응 MMSE 수신기의 구조는 빠른 페이딩 채널 환경으로 인해 실제 이동환경에는 적용이 불가능하다. 또한 다중 경로 수신 상황은 최적 탭 계수값으로의 수렴을 더욱 어렵게 한다. 본 논문에서는 CDMA 순방향 링크의 다중경로 페이딩 환경에 대해 논의해 보고 이러한 환경에서 이동국에 적용할 수 있는 적응 MMSE 레이크 수신기 구조를 제안하고 있다. 제안된 적응 MMSE 수신기는 수신 신호의 지연값과 신호의 진폭, 위상 변동과 같은 복소 채널계수값의 추정이 요구된다. 이러한 문제는 순방향 링크에 존재하는 공동 파일럿 채널을 이용함으로써 해결 가능하다. 파일럿 채널은 일반적으로 통화 채널보다 높은 송신 전력 레벨을 가지게 되므로 이를 이용할 경우 보다 정확한 채널 추정이 가능하게 된다. 게다가 레이크 구조를 사용할 경우 다중경로 페이딩 환경에서 신뢰할 수 있는 참조 신호로 사용될 수 있을 정도의 정확하고 안정된 결과를 제공하게 된다. 이러한 구조를 사용함으로써 LMS나 NLMS와 같은 일반적인 적응 알고리즘이 적응 MMSE 수신기에 적용이 가능하게 해준다.

  • PDF