• 제목/요약/키워드: model reference adaptive system

검색결과 317건 처리시간 0.033초

자기부상식 미세구동기의 비집중 적응제어기법 (Decentralized Adaptive Control Scheme for Magnetically Levitated Fine Manipulators)

  • 신은주;송태승;유준;최기봉
    • 전기전자학회논문지
    • /
    • 제3권2호
    • /
    • pp.250-258
    • /
    • 1999
  • 본 논문에서는 각 운동축들(자유도 또는 부시스템)간의 상호연관성에도 불구하고 자기부상식 미세구동기가 주어진 경로를 가능한 정밀하게 추종하도록 하는 비집중 적응제어기 설계가 제시되었다. 본 제어기는 알고있는 부시스템을 기반으로 하는 모델기준제어와 국부적응제어로 구성된다. 전자는 매니퓰레이터의 운동을 안정화시켜 기준모델을 따라가도록 하고, 후자는 간섭작용을 무기력화시키는 수준만큼 국부이득을 조정하여 전체시스템의 안정을 도모하고 연관성에 의해 유발되는 추정오차를 줄여준다. 실험결과를 통하여 제시된 기법이 기존의 PID제어기에 비해 추종성능과 외란제거 능력면에서 우수함을 보였다.

  • PDF

Adaptive TCX Windowing Technology for Unified Structure MPEG-D USAC

  • Lee, Tae-Jin;Beack, Seung-Kwon;Kang, Kyeong-Ok;Kim, Whan-Woo
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.474-477
    • /
    • 2012
  • The MPEG-D unified speech and audio coding (USAC) standardization process was initiated by MPEG to develop an audio codec that is able to provide consistent quality for mixed speech and music contents. The current USAC reference model structure consists of frequency domain (FD) and linear prediction domain (LPD) core modules and is controlled using a signal classifier tool. In this letter, we propose an LPD single-mode USAC structure using an adaptive widowing-based transform-coded excitation module. We tested our system using official test items for all mono-evaluation modes. The results of the experiment show that the objective and subjective performances of the proposed single-mode USAC system are better than those of the FD/LPD dual-mode USAC system.

지능형 속도 추정기를 이용한 유도전동기 속도 제어 (Speed Control of an Induction Motor using Intelligent Speed Estimator)

  • 김낙교;최성대
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권7호
    • /
    • pp.437-442
    • /
    • 2005
  • In order to realize the speed control of an induction motor, the information of the rotor speed is needed. So the speed sensor as an encoder or a pulse generator is used to obtain it. But the use of speed sensor occur the some problems in the control system of an induction motor. To solve the problems, the appropriate speed estimation algorithm is used instead of the speed sensor. Also there is the limitation to improve the speed control performance of an induction motor using the existing speed estimation algorithm. Therefore, in this paper, intelligent speed estimator using Fuzzy-Neural systems as adaptive laws in Model Reference Adaptive System is proposed so as to improve the existing estimation algorithm and ,using the rotor speed estimated by the Proposed estimator, the speed control of an induction motor without speed sensor is performed. The computer simulation and the experiment is executed to prove the performance of the speed control system usinu the proposed speed estimator.

외란보상기를 이용한 영구자석 동기전동기에 대한 참조모델 견실적응제어기의 성능개선 (Performance Enhancement of RMRAC Controller for Permanent Magnent Synchronous Motor using Disturbance compensator)

  • 김홍철;임훈;이장명
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.845-851
    • /
    • 2008
  • A simple RMRAC (Robust Model Reference Adaptive Control) scheme for the PMSM (Permanent Magnent Synchronous Motor) is proposed in the synchronous frame. A current control of PMSM is the most inner loop of electro-mechanical driving systems and it requires a fast and simple control law to play a foundation role in the control hierarchy. In the proposed synchronous current model, the input signal is composed of a calculated voltage by proposed adaptive laws and real system disturbance. The gains of feed-forward and feedback controllers are estimated by the proposed modified Gradient method respectively, where the system disturbances are assumed as filtered current tracking errors. After the estimation of the system disturbances from the tracking errors, the corresponding voltage is fed forward to control input voltage to compensate for the disturbances. The proposed method is robust against high frequency disturbance and has a fast dynamic response. It also shows a good real-time performance due to it's simplicity of control structure. Through the simulations and real experiments, efficiency of the proposed method is verified.

속도 추정 알고리즘을 이용한 유도전동기 제어 시스템 특성 (A Characteristics of Control System for Induction Motor using a Speed Estimation Algorithm)

  • 황락훈;나승권;강진희
    • 한국항행학회논문지
    • /
    • 제24권2호
    • /
    • pp.101-106
    • /
    • 2020
  • 유도전동기의 속도 제어를 원활하게 수행하기 위해서는 필요한 회전자 속도 정보를 얻어야 한다. 속도 정보를 얻으려면 센서를 사용하여 얻어야 하지만, 센서를 사용하지 않고 적절한 알고리즘을 이용하여 얻을 수도 있다. 속도 정보를 얻기 위해서 모델 기준 적응 시스템(MARS; model reference adaptive system)을 사용하여 시스템을 설계 하였고, 유도전동기의 속도 제어 방식 중에 하나인 간접 벡터 제어 방식으로 전동기의 전류와 회전자 파라미터 값으로부터 연산된 슬립 주파수를 회전자 속도와 합하여 자속의 위치 정보를 얻어내는 방식을 사용하였다. 실제 자속 정보 없이도 넓은 속도 영역에서 간단하게 순시 전류 제어를 행할 수 있으며 제어기의 구조가 간단하다는 장점을 가질 수 있다. 따라서 본 논문에서는 간접 벡터 제어 방식을 기반으로 제어 시스템을 구성하였고, 이를 실현하기 위해 필요한 회전자 속도 정보를 센서로 사용하지 않고 개발한 지능형 알고리즘으로 추정하여 유도전동기의 속도 제어 시스템을 개발하였다.

MRAS 관측기를 이용한 SRM의 속도 및 위치센서없는 제어 (The Control of Switched Reluctance Motor Using MRAS without Speed and Position Sensors)

  • 양이우;김진수;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권11호
    • /
    • pp.632-639
    • /
    • 1999
  • SRM(Switched Reluctance Motor) drives require the accurate position and speed information of the rotor. These informations are generally provided by a shaft encoder or resolver. High temperature, EMI, and dust may make detection performance deteriorate. Therefore, the elimination of the position and speed sensor is desirable. In this paper, a nonlinear adaptive observer using the MRAS(Model Reference Adaptive System) is proposed. The rotor speed and position are estimated by the adaptation law using the real and estimated currents. The stability of the adaptive observer is proved by Lyapunov stability theory. The proposed methods are implemented with TMS320C31 DSP. Experimental results prove that the observer has a good estimation performance of the rotor speed and position despite of the parameter variations and loads, and the speed control can be accomplished in the wide speed range.

  • PDF

직접 토크제어에 의한 위치검출기 없는 유도전동기의 고성능 모션제어 시스템 (A High-Performance Position Sensorless Motion Control System of Induction Motor with Direct Torque Control)

  • 김민회;김남훈;백원식
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권7호
    • /
    • pp.399-405
    • /
    • 2002
  • This paper presents an implementation of digital high-performance Position sensorless motion control system of an induction motor drives with Direct Torque Control(DTC). The system consist of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controller, optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. The speed observer is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal. The simulation and experimental results are provided to evacuate the consistency and the performance of the suggested position sensorless control algorithm. The developed position sensorless system are shown a good motion control response characteristic and high performance features using 2.2[kw] general purposed induction motor.

Adaptive Control for Tracking Trajectory of a Two-Wheeled Welding Mobile Robot with Unknown Parameters

  • Bui, Trong Hieu;Chung, Tan-Lam;Suh, Jin-Ho;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.191-196
    • /
    • 2003
  • This paper presents a method to design an adaptive controller for the kinematic model of a two-wheeled welding mobile robot (WMR) with unknown parameters. We propose a nonlinear controller based on the Lyapunov function to enhance the tracking properties of the WMR. The WMR can track any smooth curved welding path at a constant velocity of the welding point. The system has three degrees of freedom including two wheels and one torch slider. Torch slider motion is used for fast tracking. To design the tracking performance, the errors from WMR to steel wall is defined, and the controller is designed to drive the errors to zero as fast as possible. The effectiveness of the proposed controller is shown through simulation results.

  • PDF

Stable Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2254-2259
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network(WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges advantages of neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of mobile robot using the gradient descent(GD) method. In addition, an approach that uses adaptive learning rates for the training of WFNN controller is driven via a Lyapunov stability analysis to guarantee the fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control performance of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

  • PDF

MRAS Speed Estimator Based on Type-1 and Type-2 Fuzzy Logic Controller for the Speed Sensorless DTFC-SVPWM of an Induction Motor Drive

  • Ramesh, Tejavathu;Panda, Anup Kumar;Kumar, S. Shiva
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.730-740
    • /
    • 2015
  • This paper presents model reference adaptive system speed estimators based on Type-1 and Type-2 fuzzy logic controllers for the speed sensorless direct torque and flux control of an induction motor drive (IMD) using space vector pulse width modulation. A Type-1 fuzzy logic controller (T1FLC) based adaptation mechanism scheme is initially presented to achieve high performance sensorless drive in both transient as well as in steady-state conditions. However, the Type-1 fuzzy sets are certain and cannot work effectively when a higher degree of uncertainties occurs in the system, which can be caused by sudden changes in speed or different load disturbances and, process noise. Therefore, a new Type-2 FLC (T2FLC) - based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties, improve the performance, and is also robust to different load torque and sudden changes in speed conditions. The detailed performance of different adaptation mechanism schemes are performed in a MATLAB/Simulink environment with a speed sensor and sensorless modes of operation when an IMD is operates under different operating conditions, such as no-load, load, and sudden changes in speed. To validate the different control approaches, the system is also implemented on a real-time system, and adequate results are reported for its validation.