• 제목/요약/키워드: model reference adaptive control

검색결과 380건 처리시간 0.02초

가법적 중복적응 제어기를 이용한 신뢰성 제어 시스템에 관한 연구 (A Study on Reliable Control System Using an Additive Redundant Adaptive Controller)

  • 조영조;김광배
    • 대한전기학회논문지
    • /
    • 제39권3호
    • /
    • pp.301-311
    • /
    • 1990
  • A multiple controller structure consisting of a typical feedback controller and an additive redundant controller is proposed for enhancing the reliability of the control system. For the case where the main controller is chosen as a pole assignment controller with input/output measurements and the redundant controller as the Model Reference Adaptive Controller (MRAC) whose reference model is the closed-loop combination of the plant and the main controller, it is proven that the tracking error between the command input and plant output converges to zero under failure in one of the controllers or parameter perturbations of the plant, and further that the reliability measured by Mean Time To Failure (MTTF) is greater than that of the system with only a single main controller. A simulation Example is provided to illustrate reliable operation of the proposed control system against the controller failure.

  • PDF

새로운 $\sigma$-변형 알고리즘을 사용한 강인한 기준모델 적응제어 (A Robust Model Reference Adaptive Control with a Modified $\sigma$-modification algorithm)

  • 이호진;정종대;최계근
    • 대한전자공학회논문지
    • /
    • 제26권9호
    • /
    • pp.1322-1331
    • /
    • 1989
  • This paper proposes a new adaptation algorithm with which a model reference adaptive control can give a local boundedness of the tracking error applied to a continuous-time linear time-invariant single-input single-output plant whose reduced-order model is of relative degree 1 and whose unmodeled dynamics may be represented in a sigular perturbation form. With the addition of an offset term and an extra adaptation structure, this algorithm is shown to have a robustness property in the sense that this gives zero residual tracking errors when the unmodeled dynamics are disappeared.

  • PDF

Auto-Tuning of Reference Model Based PID Controller Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.246-254
    • /
    • 2002
  • In this paper auto-tuning scheme of PID controller based on the reference model has been studied for a Process control system by immune algorithm. Up to this time, many sophisticated tuning algorithms have been tried in order to improve the PID controller performance under such difficult conditions. Also, a number of approaches have been proposed to implement mixed control structures that combine a PID controller with fuzzy logic. However, in the actual plant, they are manually tuned through a trial and error procedure, and the derivative action is switched off. Therefore, it is difficult to tune. Since the immune system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (Parallel Distributed Processing) network to complete patterns against the environmental situation. Simulation results reveal that reference model basd tuning by immune network suggested in this paper is an effective approach to search for optimal or near optimal process control.

비최소 위상 시스템에 대한 기준 모델 적응 폴-플레이스먼트 제어기 (Model Reference Adaptive Pole-Placement Controller of Nonminimum Phase systems)

  • 김종환;최계근
    • 대한전자공학회논문지
    • /
    • 제22권6호
    • /
    • pp.89-96
    • /
    • 1985
  • 단일 입·출력 시불변 비최소 위상 공정에 대한 폴-플레이스먼트 제어기를 기준 모델을 사용하여 설계하였다. 제안된 폴-플레이스먼트 제어기는 변수 다항식5(q-1)만을 사용하여 파라미터 형으로 나타내어 기준모델의 전달함수와 제어기의 전달함수를 같게 하는 방법을 사용하였다. 또한, 적응 폴-플레이스먼트 제어기는 위의 제어기에 적응 알고리즘을 적응하여 제어기의 파라미터를 추정 하도록 설계 되었다.

  • PDF

적응제어 기법을 적용한 ABS의 바퀴 슬립 제어 (Wheel Slip Control of ABS Using Adaptive Control Method)

  • 최종환
    • 한국기계가공학회지
    • /
    • 제5권3호
    • /
    • pp.71-79
    • /
    • 2006
  • ABS is a safety device for preventing wheel locking in a sudden baking. Its control methods are classified into three types; deceleration control, wheel slip control and deceleration/acceleration control. The braking force takes the influence of the friction coefficient between road and tire, which in turn depends on the wheel slip as well as road conditions. In this paper, it has been proposed the wheel slip control system to apply the adaptive control method at the ABS. To maintain wheel slip to desired wheel slip, it have been done the linearization and designed the adaptive controller to apply gradient method based on the reference model. It is illustrated by computer simulations that the proposed control system gives good performances and adaptation to parameter variation.

  • PDF

HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어 (High Performance of Induction Motor Drive with HAI Controller)

  • 남수명;고재섭;최정식;정동화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권4호
    • /
    • pp.154-157
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

멀티루프 피드백 방식에 의한 직류 서보 모타의 인센서티브 (insensitive) 위치 제어기의 구성 (DC Servo Motor Insensitive Position System by Multi-loop Feedback Control)

  • 이규찬;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.28-31
    • /
    • 1988
  • This paper proposes a new linear adaptive position controller of DC servo motor. The proposed method can improve the drive performance and rapidly reject the state error caused by both parameter variations and force disturbance. The structure of this adaptive control method is based multiloop feedback control and model reference control. Simulation results are presented to verify the improved response when parameter variations and load disturbance give relatively significant effects to the servo system.

  • PDF

상부공격 지능탄의 회전각 적응제어 기법 연구 (A Study on the Adaptive Roll Control Scheme for the Top Attack Smart Projectile)

  • 홍종태;정수경;최상경
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.61-70
    • /
    • 2000
  • An Adaptive Positive Position Feedback method is presented for controlling the roll of the supersonic smart projectile. The proposed strategy combines the attractive attributes of Positive Position Feedback(PPF) of Goh and Caughey, and Lyapunov stability theorem. The parameters of Adaptive-PFF controller are adjusted in an adaptive mauler in order to follow the performance of an optimal reference model. In this way, optimal damping and zero steady-state errors can be achieved even in the presence of uncertain or changing plant parameters. The performance obtained with the Adaptive-PPF algorithm is compared with conventional PPF control algorithm. The results obtained emphasize the potential of Adaptive-PPF algorithm as an efficient means for controlling plants such as supersonic flight systems with uncertainties in real time.

  • PDF

불안정 비선형 시불변 시스템을 위한 퍼지제어기가 결합된 적응제어기 (An Adaptive Controller Cooperating with Fuzzy Controller for Unstable Nonlinear Time-invariant Systems)

  • Dae-Young, Kim;In-Hwan, Kim;Jong-Hwa, Kim;Byung-Kyul, Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.946-961
    • /
    • 2004
  • A new adaptive controller which combines a model reference adaptive controller (MRAC) and a fuzzy controller is developed for unstable nonlinear time-invariant systems. The fuzzy controller is used to analyze and to compensate the nonlinear time-invariant characteristics of the plant. The MRAC is applied to control the linear time-invariant subsystem of the unknown plant, where the nonlinear time-invariant plant is supposed to comprise a nonlinear time-invariant subsystem and a linear time-invariant subsystem. The stability analysis for the overall system is discussed in view of global asymptotic stability. In conclusion. the unknown nonlinear time-invariant plant can be controlled by the new adaptive control theory such that the output error of the given plant converges to zero asymptotically.

태양광 컨버터 시스템의 과도응답 개선을 위한 비선형 적응제어 및 안정성 해석 (Nonlinear Adaptive Control and Stability Analysis for Improving Transient Response of Photovoltaic Converter Systems)

  • 조현철;유수복;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1175-1183
    • /
    • 2009
  • In photovoltaic(PV) generator systems, DC-DC converters are significantly considered for control system performance in power quality point of view. This paper presents a novel adaptive control method for DC-DC converters applied in PV generator systems. First, we derive a state-space average model of the converter system and then propose a reset control methodology to enhance transient response performance for time-varying PV systems. For estimating parameters of a reset control, a gradient descent optimization is utilized and an adjustment rule of them are derived respectively. An objective of the optimization is that characteristic equation of an augmented system model which is formed with an converter system model and an reset control is to trace a predefined polynomial given as a reference characteristic model. Next, we accomplish stability analysis by means of a well-known Lyapunov theory for nonlinear converter systems including time-varying voltage excitation from a PV generator. Numerical simulation demonstrates reliability of our control methodology and its superiority by comparison to a traditional control strategy.