• Title/Summary/Keyword: model reaction

Search Result 2,851, Processing Time 0.035 seconds

A Characterization of Pervaporation-facilitated Esterification Reaction with non-perfect Separation (비완전 막분리시 투과증발 막촉진 에스터화 반응 거동 연구)

  • C. K Yeom;F. U. Baig
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.268-282
    • /
    • 2003
  • Pervaporation-facilitated esterification with slow reaction regime was characterized by using a practical model based on non-perfect separation through membrane. A non-perfect separation in which the membrane is not perfectly permselective to water was applied to the model. Thus, membrane selectivity and membrane capability to remove water were included in the simulation model to explain how they influence the membrane-facilitated reaction process and improve the reactor performance. It was shown by simulation that in the reaction systems with non-perfect separation, reaction completion can hardly be achievable when any reactant at initial molar ratio=1 or the less abundant reactant at initial molar ratio>1 permeates through membrane, and the permeation of ester accelerates the forward reaction md increase reaction conversion at any instant through removal of product species like water. The volume change causes concentrating both reactants and products that affect the reaction with time in opposite ways; reactant-concentrating effect is dominant during the initial stage of reaction, increasing the reaction rate, and then concentrating product influences more reaction by decreasing the reaction rate.

Prediction of Solvent Effects on Rate Constant of [2+2] Cycloaddition Reaction of Diethyl Azodicarboxylate with Ethyl Vinyl Ether Using Artificial Neural Networks

  • Habibi-Yangjeh, Aziz;Nooshyar, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.139-145
    • /
    • 2005
  • Artificial neural networks (ANNs), for a first time, were successfully developed for the modeling and prediction of solvent effects on rate constant of [2+2] cycloaddition reaction of diethyl azodicarboxylate with ethyl vinyl ether in various solvents with diverse chemical structures using quantitative structure-activity relationship. The most positive charge of hydrogen atom (q$^+$), dipole moment ($\mu$), the Hildebrand solubility parameter (${\delta}_H^2$) and total charges in molecule (q$_t$) are inputs and output of ANN is log k$_2$ . For evaluation of the predictive power of the generated ANN, the optimized network with 68 various solvents as training set was used to predict log k$_2$ of the reaction in 16 solvents in the prediction set. The results obtained using ANN was compared with the experimental values as well as with those obtained using multi-parameter linear regression (MLR) model and showed superiority of the ANN model over the regression model. Mean square error (MSE) of 0.0806 for the prediction set by MLR model should be compared with the value of 0.0275 for ANN model. These improvements are due to the fact that the reaction rate constant shows non-linear correlations with the descriptors.

BIFURCATION ANALYSIS OF A SINGLE SPECIES REACTION-DIFFUSION MODEL WITH NONLOCAL DELAY

  • Zhou, Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.249-281
    • /
    • 2020
  • A reaction-diffusion model with spatiotemporal delay modeling the dynamical behavior of a single species is investigated. The parameter regions for the local stability, global stability and instability of the unique positive constant steady state solution are derived. The conditions of the occurrence of Turing (diffusion-driven) instability are obtained. The existence of time-periodic solutions, the existence and nonexistence of nonconstant positive steady state solutions are proved by bifurcation method and energy method. Numerical simulations are presented to verify and illustrate the theoretical results.

An analysis of learning effect of finger's reaction time for middle and old aged

  • 서승록;이상도
    • Journal of the Ergonomics Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.47-56
    • /
    • 1992
  • In this paper, a mathematical model of learning curve is proposed to study the fi- nger's reaction time. The model is a logarithmic linear type which represents a lear- ning curve appropriately, and parameters are estimated by the linear. The learning coefficient and percentage of a reaction time can easily computed in the mathematical model. This quantitative approach provieds an important information to be used fot the working capqbility qualification of re-employment as well as the adaptability estimation of aged workers.

  • PDF

The analysis on learning effect of reaction time to the stimulus (자극에 의한 반응시간의 학습효과에 관한 연구)

  • S.L.Seung;Lee, S.D.
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.113-120
    • /
    • 1992
  • In this paper, a mathematical model of learning curve is proposed to study the finger's reaction time. The model is a logarithmic linear type which represents a learning curve appropriately, and parameters are estimated by the linear. The learning coefficient and percentage of a reaction time can be easily computed in the mathematical model. This quantitative approach provides an important information to be used for the working capability qualification for re-employment as well as for the adaptability estimation of aged workers.

  • PDF

Study on Neutralization Progress Model of Concrete with Coating Finishing Materials in Outdoor Exposure Conditions Based on the Diffusion Reaction of Calcium Hydroxide

  • Park, Jae-Hong;Hasegawa, Takuya;Senbu, Osamu;Park, Dong-Cheon
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.155-163
    • /
    • 2012
  • In order to predict the neutralization of concrete which is the reaction of carbonation dioxide from the outside and cement hydration product, such as calcium hydroxide and C-S-H, it was studied the numerical analysis method considering change of the pore structure and relative humidity during the neutralization reaction. Diffusion-reaction neutralization model was developed to predict the neutralization depth of concrete with coating finishing material. In order to build numerical analysis models considering outdoor environment and finishing materials, the adaption of proposed model was shown the results of existing outdoor exposure test results and accelerated carbonation test.

Numerical analysis on foam reaction injection molding of polyurethane, Part A: Considering re-condensation of physical foam agent

  • Han, HyukSu;Nam, Hyun Nam;Eun, Youngkee;Lee, Su Yeon;Nam, Jeongho;Ryu, Jeong Ho;Lee, Sung Yoon;Kim, Jungin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.209-214
    • /
    • 2016
  • Foam reaction injection molding (FRIM) is a widely used process for manufacturing polyurethane foam with complex shapes. Numerical model for polyurethane foam forming reaction during FRIM process has been intensively investigated by a number of researchers to precisely predict final shapes of polyurethane foams. In this study, we have identified a problem related with a previous theoretical model for polyurethane foam forming reaction. Thus, previous theoretical model was modified based on experimental and computational results.

A comparative study for steam-methane reforming reaction analysis model (수증기-메탄개질반응 해석모델의 비교연구)

  • Choi, Chong-Gun;Jung, Tae-Yong;Dong-Hoon, Shin;Nam, Jin-Hyn;Kim, Yong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1997-2002
    • /
    • 2007
  • The reformer is one of the most important chemical processes for the production of high purity hydrogen from fossil fuel. This study compares zero-dimensional model with CFD models for reaction analysis of methane-steam reformer. The zero-dimensional model is an empirical equation, however CFD model uses reactions of Arrhenius type. Because the reaction coefficients of the steam-methane catalytic reforming have not been reported before in the form of Arrhenius type, the present study aims to find the appropriate reaction coefficients. The used CFD code is Fluent 6.2 version. Several models are compared for the case of various operating temperature, mass of catalyst and steam to methane ratio.

  • PDF

Modeling the alkali aggregate reaction expansion in concrete

  • Zahira, Sekrane Nawal;Aissa, Asroun
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 2015
  • Alkali aggregate reaction affects numerous civil engineering structures and causes irreversible expansion and cracking. This work aims at developing model to predict the potential expansion of concrete containing alkali-reactive aggregates. First, the paper presents the experimental results concerning the influence of particle size of an alkali-reactive aggregate on mortar expansion studied at 0.15-0.80 mm, 1.25-2.50 mm and 2.5-5.0 mm size fractions and gives data necessary for model development. Results show that no expansion was measured on the mortars using small particles (0.15-0.80 mm) while the particles (1.25-2.50 mm) gave the largest expansions. Finally, model is proposed to simulate the experimental results by studying correlations between the measured expansions and the size of aggregates and to calculate the thickness of the porous zone necessary to take again all the volume of the gel created by this chemical reaction.

Analysis of hydration of ultra high performance concrete (초고성능 콘크리트의 수화모델에 대한 연구)

  • Wang, Hai-Long;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF