• Title/Summary/Keyword: model of learning

Search Result 9,923, Processing Time 0.034 seconds

Kinect Sensor- based LMA Motion Recognition Model Development

  • Hong, Sung Hee
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.367-372
    • /
    • 2021
  • The purpose of this study is to suggest that the movement expression activity of intellectually disabled people is effective in the learning process of LMA motion recognition based on Kinect sensor. We performed an ICT motion recognition games for intellectually disabled based on movement learning of LMA. The characteristics of the movement through Laban's LMA include the change of time in which movement occurs through the human body that recognizes space and the tension or relaxation of emotion expression. The design and implementation of the motion recognition model will be described, and the possibility of using the proposed motion recognition model is verified through a simple experiment. As a result of the experiment, 24 movement expression activities conducted through 10 learning sessions of 5 participants showed a concordance rate of 53.4% or more of the total average. Learning motion games that appear in response to changes in motion had a good effect on positive learning emotions. As a result of study, learning motion games that appear in response to changes in motion had a good effect on positive learning emotions

Anchor Free Object Detection Continual Learning According to Knowledge Distillation Layer Changes (Knowledge Distillation 계층 변화에 따른 Anchor Free 물체 검출 Continual Learning)

  • Gang, Sumyung;Chung, Daewon;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.600-609
    • /
    • 2022
  • In supervised learning, labeling of all data is essential, and in particular, in the case of object detection, all objects belonging to the image and to be learned have to be labeled. Due to this problem, continual learning has recently attracted attention, which is a way to accumulate previous learned knowledge and minimize catastrophic forgetting. In this study, a continaul learning model is proposed that accumulates previously learned knowledge and enables learning about new objects. The proposed method is applied to CenterNet, which is a object detection model of anchor-free manner. In our study, the model is applied the knowledge distillation algorithm to be enabled continual learning. In particular, it is assumed that all output layers of the model have to be distilled in order to be most effective. Compared to LWF, the proposed method is increased by 23.3%p mAP in 19+1 scenarios, and also rised by 28.8%p in 15+5 scenarios.

Effects of Concept Change Teaching MSeoung-HeyPaikodel Considering Students' Learning Motivations (학습자의 학습 동기를 고려한 개념변화 수업 모형의 효과 분석)

  • Paik, Seoung-Hey;Kim, Hye-Kyong;Che, Woo-Ki;Kwon, Kyoon;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.2
    • /
    • pp.305-314
    • /
    • 1999
  • The effects of three teaching models were compared in this research. One of those is concept change model, another is concept change model based on students learning motivations, the other is traditional teaching method based on science textbooks. The subjects of this research were the 8th grade students of Korean middle school. They were divided into three groups, and tested learning motivations. All of the three groups improved their learning motivations and concept understanding by the classes. Especially, the group of concept change model based on students learning motivations represented most effective improvement of learning motivations. The concept change teaching model and concept change teaching model based on students learning motivations are more effective in concept understanding than traditional teaching method based on textbooks. The students who have high learning motivations improved their concept understanding by the classes of concept change model based on students learning motivations. The students who have low learning motivations improved their learning motivations by the classes of concept change model based on students learning motivations also.

  • PDF

Privacy-Preserving Deep Learning using Collaborative Learning of Neural Network Model

  • Hye-Kyeong Ko
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.56-66
    • /
    • 2023
  • The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.

Scorm-based Sequencing & Navigation Model for Collaborative Learning (Scorm 기반 협력학습을 위한 시퀀싱 & 네비게이션 모델)

  • Doo, Chang-Ho;Lee, Jun-Seok
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.189-196
    • /
    • 2012
  • In this paper, we propose a Scorm-based Sequencing & Navigation Model for Collaborative Learning. It is an e-Learning process control model that is used to efficiently and graphically defining Scorm's content aggregation model and its sequencing prerequistites through a formal approach. To define a process based model uses the expanded ICN(Information Control Net) model. which is called SCOSNCN(SCO Sequencing & Navigation Control Net). We strongly believe that the process-driven model delivers a way of much more convenient content aggregating work and system, in terms of not only defining the intended sequence and ordering of learning activities, but also building the runtime environment for sequencing and navigation of learning activities and experiences.

Semi-Supervised Learning Using Kernel Estimation

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.629-636
    • /
    • 2007
  • A kernel type semi-supervised estimate is proposed. The proposed estimate is based on the penalized least squares loss and the principle of Gaussian Random Fields Model. As a result, we can estimate the label of new unlabeled data without re-computation of the algorithm that is different from the existing transductive semi-supervised learning. Also our estimate is viewed as a general form of Gaussian Random Fields Model. We give experimental evidence suggesting that our estimate is able to use unlabeled data effectively and yields good classification.

  • PDF

A New Learning Algorithm of Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Ryu, Jeong-Woong;Song, Chang-Kyu;Kim, Sung-Suk;Kim, Sung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

Design and Verification of Spacecraft Pose Estimation Algorithm using Deep Learning

  • Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.61-78
    • /
    • 2024
  • This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.

Design of a ParamHub for Machine Learning in a Distributed Cloud Environment

  • Su-Yeon Kim;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.161-168
    • /
    • 2024
  • As the size of big data models grows, distributed training is emerging as an essential element for large-scale machine learning tasks. In this paper, we propose ParamHub for distributed data training. During the training process, this agent utilizes the provided data to adjust various conditions of the model's parameters, such as the model structure, learning algorithm, hyperparameters, and bias, aiming to minimize the error between the model's predictions and the actual values. Furthermore, it operates autonomously, collecting and updating data in a distributed environment, thereby reducing the burden of load balancing that occurs in a centralized system. And Through communication between agents, resource management and learning processes can be coordinated, enabling efficient management of distributed data and resources. This approach enhances the scalability and stability of distributed machine learning systems while providing flexibility to be applied in various learning environments.

A New Learning Algorithm for Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1254-1259
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

  • PDF