• 제목/요약/키워드: model of learning

검색결과 9,923건 처리시간 0.038초

Takagi-Sugeno Fuzzy Model-based Iterative Learning Control Systems: A Two-dimensional System Theory Approach

  • Chu, Jun-Uk;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.169.3-169
    • /
    • 2001
  • This paper introduces a new approach to analysis of error convergence for a class of iterative learning control systems. First, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established in the form of T-S fuzzy model. We analysis the error convergence in the sense of induced 2 L -norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative learning controller design problem to guarantee the error convergence can be reduced to linear matrix inequality problems. In comparison with others, our learning algorithm ...

  • PDF

하위 훈련 성과 융합을 위한 순환적 계층 재귀 모델 (A Model of Recursive Hierarchical Nested Triangle for Convergence from Lower-layer Sibling Practices)

  • 문효정
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권2호
    • /
    • pp.415-423
    • /
    • 2018
  • 최근, 컴퓨터 분야의 기계 학습(Machine Learning)과 딥러닝(Deep Learning) 등 컴퓨터 관련 학습이 각광을 받고 있다. 이들은 인공 신경망(Artificial Neural Network)을 이용하여 가장 하위 레벨로부터 학습을 시작하여, 최상위 레벨까지 그 결과를 전달하여 최종 결과를 산출하는 방식이다. 하위레벨로부터의 체계적인 학습을 통한 효과적인 성장 및 교육 방안에 대한 연구는 다양한 분야에서 이루어지고 있으나, 체계적인 규칙과 방법에 기반한 모델은 찾아보기가 힘들다. 이에, 본 논문에서는 성장 및 융합 모델인, TNT 모델(Transitive Nested Triangle Model)을 처음으로 제안한다. 제안하는 모델은 기하학적인 형태를 통해 형성된 각 기능들이 유기적 계층 관계를 형성하여, 상위로 성장 및 융합하면서, 그 결과가 반복 사용되는 순환적 재귀 모델이다. 즉, '수평적 형제 병합에 이은 상위로의 융합(Horizontal Sibling Merges and Upward Convergence)'의 분석적 방법이다. 이러한 모델은 공학, 디지털공학, 인문학, 예술학 등에 모두 적용될 수 있는 기본기적 이론으로, 본 연구에서는 제안하는 TNT 모델을 설명하는 것에 그 초점을 둔다.

혼합 데이터 마이닝 기법인 불일치 패턴 모델의 특성 연구 (Characteristics on Inconsistency Pattern Modeling as Hybrid Data Mining Techniques)

  • 허준;김종우
    • Journal of Information Technology Applications and Management
    • /
    • 제15권1호
    • /
    • pp.225-242
    • /
    • 2008
  • PM (Inconsistency Pattern Modeling) is a hybrid supervised learning technique using the inconsistence pattern of input variables in mining data sets. The IPM tries to improve prediction accuracy by combining more than two different supervised learning methods. The previous related studies have shown that the IPM was superior to the single usage of an existing supervised learning methods such as neural networks, decision tree induction, logistic regression and so on, and it was also superior to the existing combined model methods such as Bagging, Boosting, and Stacking. The objectives of this paper is explore the characteristics of the IPM. To understand characteristics of the IPM, three experiments were performed. In these experiments, there are high performance improvements when the prediction inconsistency ratio between two different supervised learning techniques is high and the distance among supervised learning methods on MDS (Multi-Dimensional Scaling) map is long.

  • PDF

문제중심학습 기반의 인터넷 윤리 학습 모형 (An Internet Ethics Learning Model based on PBL)

  • 박정미;강오한
    • 컴퓨터교육학회논문지
    • /
    • 제15권2호
    • /
    • pp.29-36
    • /
    • 2012
  • 본 논문에서는 문제중심학습(Problem-based Learning)에 기반한 인터넷 윤리 학습 모형을 개발하고 수업에 적용한다. 새로운 학습 모형은 토론과 글쓰기를 통한 학습자 참여 중심의 수업으로 이루어진다. 새로운 학습 모형을 수업에 적용한 후 인터넷 윤리의식의 변화를 조사하고 분석하였다. 연구 결과에 따르면 자율, 존중, 참여, 책임 영역에서 학습자의 인터넷 윤리의식이 향상된 것으로 확인되었다. 특히 자율과 책임 영역이 통계적으로 유의미한 향상이 있는 것으로 확인되었다.

  • PDF

제 4차 산업혁명시대의 공과대 여학생 역량분석을 반영한 교수법 모델 (A Pedagogical Model Reflecting on Competency Analysis of of the Female Engineering Students in the Fourth Industrial Revolution)

  • 백란
    • 공학교육연구
    • /
    • 제20권2호
    • /
    • pp.57-62
    • /
    • 2017
  • The purpose of this study is to develop an educational model based on the capacity analysis of college students. In order to measure the learning ability of female science and engineering students, we used various tools to derive core competencies. The competency element of human resources implementation, the element of learning achievement area in the undergraduate education actual condition survey, and the analysis of the learning achievement elements of the engineering certification program were analyzed and the development of teaching method was searched to find ways to increase the competence of female students. In addition, we developed a model that can apply the development of pedagogy in the curriculum to the liberal arts, majors, and comparative courses, and presented the internship in field experience area, the improvement of on the spot learning, and teaching method and guidance to enhance the female students' competence. Also, as a case study of the proposed teaching method, new curriculum of 'Understanding of Big Data' which is the basis of the fourth industrial revolution technology in the second semester of 2016 was developed and applied to the education model. The results of this study are very positive, and we can expect the effectiveness of the new education model to enhance the learning ability and capacity of female students.

데이터 마이닝을 위한 경쟁학습모텔과 BP알고리즘을 결합한 하이브리드형 신경망 (A Neural Network Combining a Competition Learning Model and BP ALgorithm for Data Mining)

  • 강문식;이상용
    • Journal of Information Technology Applications and Management
    • /
    • 제9권2호
    • /
    • pp.1-16
    • /
    • 2002
  • Recently, neural network methods have been studied to find out more valuable information in data bases. But the supervised learning methods of neural networks have an overfitting problem, which leads to errors of target patterns. And the unsupervised learning methods can distort important information in the process of regularizing data. Thus they can't efficiently classify data, To solve the problems, this paper introduces a hybrid neural networks HACAB(Hybrid Algorithm combining a Competition learning model And BP Algorithm) combining a competition learning model and 8P algorithm. HACAB is designed for cases which there is no target patterns. HACAB makes target patterns by adopting a competition learning model and classifies input patterns using the target patterns by BP algorithm. HACAB is evaluated with random input patterns and Iris data In cases of no target patterns, HACAB can classify data more effectively than BP algorithm does.

  • PDF

이미지 분류를 위한 딥러닝 기반 CNN모델 전이 학습 비교 분석 (CNN model transition learning comparative analysis based on deep learning for image classification)

  • 이동준;전승제;이동휘
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.370-373
    • /
    • 2022
  • 최근 Tensorflow나 Pytorch, Keras 같은 여러가지의 딥러닝 프레임워크 모델들이 나왔다. 또한 이미지 인식에 Tensorflow, Pytorch, Keras 같은 프레임 워크를 이용하여 CNN(Convolutional Neural Network)을 적용시켜 이미지 분류에서의 최적화 모델을 주로 이용한다. 본 논문에서는 딥러닝 이미지 인식분야에서 가장 많이 사용하고 있는 파이토치와 텐서플로우의 프레임 워크를 CNN모델에 학습을 시킨 결과를 토대로 두 프레임 워크를 비교 분석하여 이미지 분석할 때 최적화 된 프레임워크를 도출하였다.

  • PDF

RapidEye 위성영상과 Semantic Segmentation 기반 딥러닝 모델을 이용한 토지피복분류의 정확도 평가 (Accuracy Assessment of Land-Use Land-Cover Classification Using Semantic Segmentation-Based Deep Learning Model and RapidEye Imagery)

  • 심우담;임종수;이정수
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.269-282
    • /
    • 2023
  • 본 연구는 딥러닝 모델(deep learning model)을 활용하여 토지피복분류를 수행하였으며 입력 이미지의 크기, Stride 적용 등 데이터세트(dataset)의 조절을 통해 토지피복분류를 위한 최적의 딥러닝 모델 선정을 목적으로 하였다. 적용한 딥러닝 모델은 3종류로 Encoder-Decoder 구조를 가진 U-net과 DeeplabV3+, 두 가지 모델을 결합한 앙상블(Ensemble) 모델을 활용하였다. 데이터세트는 RapidEye 위성영상을 입력영상으로, 라벨(label) 이미지는 Intergovernmental Panel on Climate Change 토지이용의 6가지 범주에 따라 구축한 Raster 이미지를 참값으로 활용하였다. 딥러닝 모델의 정확도 향상을 위해 데이터세트의 질적 향상 문제에 대해 주목하였으며 딥러닝 모델(U-net, DeeplabV3+, Ensemble), 입력 이미지 크기(64 × 64 pixel, 256 × 256 pixel), Stride 적용(50%, 100%) 조합을 통해 12가지 토지피복도를 구축하였다. 라벨 이미지와 딥러닝 모델 기반의 토지피복도의 정합성 평가결과, U-net과 DeeplabV3+ 모델의 전체 정확도는 각각 최대 약 87.9%와 89.8%, kappa 계수는 모두 약 72% 이상으로 높은 정확도를 보였으며, 64 × 64 pixel 크기의 데이터세트를 활용한 U-net 모델의 정확도가 가장 높았다. 또한 딥러닝 모델에 앙상블 및 Stride를 적용한 결과, 최대 약 3% 정확도가 상승하였으며 Semantic Segmentation 기반 딥러닝 모델의 단점인 경계간의 불일치가 개선됨을 확인하였다.

Realtime Analysis of Sasang Constitution Types from Facial Features Using Computer Vision and Machine Learning

  • Abdullah;Shah Mahsoom Ali;Hee-Cheol Kim
    • Journal of information and communication convergence engineering
    • /
    • 제22권3호
    • /
    • pp.256-266
    • /
    • 2024
  • Sasang constitutional medicine (SCM) is one of the best traditional therapeutic approaches used in Korea. SCM prioritizes personalized treatment that considers the unique constitution of an individual and encompasses their physical characteristics, personality traits, and susceptibility to specific diseases. Facial features are essential for diagnosing Sasang constitutional types (SCTs). This study aimed to develop a real-time artificial intelligence-based model for diagnosing SCTs using facial images, building an SCTs prediction model based on a machine learning method. Facial features from all images were extracted to develop this model using feature engineering and machine learning techniques. The fusion of these features was used to train the AI model. We used four machine learning algorithms, namely, random forest (RF), multilayer perceptron (MLP), gradient boosting machine (GBM), and extreme gradient boosting (XGB), to investigate SCTs. The GBM outperformed all the other models. The highest accuracy achieved in the experiment was 81%, indicating the robustness of the proposed model and suitability for real-time applications.

강소농교육 참여 농업인의 직무성과와 학습지향성, 자기효능감, 학습전이의 구조적 관계 (Structural Relations of Learning Orientation, Self-Efficacy, Learning Transfer and Job Performance of Farmers who Participated in the Strong and Small Farms Education)

  • 김사균;양석준
    • 농촌지도와개발
    • /
    • 제22권4호
    • /
    • pp.455-464
    • /
    • 2015
  • The purposes of this study are to explain and identify the frame of structural relations of learning orientation, self-efficacy, learning transfer and job performance of farmers who participated in the strong and small farms education. This is an experimental research with the data collected from 495 farmers who have taken the farm education. Based on the collected data, the study conducted a structural equation modeling(SEM) to confirm the validity and analyze the structural relations of the suggested model. Using measured and latent variables drew from the analyses, the study set a structural equation model and tested the model by analysis of the structural equation modeling with AMOS 18.0. The results found from the empirical analysis can be summarized as follows. 1) Learning orientation and self-efficacy positively influenced job performance through learning transfer. 2) The hypothesis that learning orientation would have direct impact on job performance was not supported. 3) The strong and small farms education is useful to expand learning transfer and to enhance job performance. So, government policy support has to reinforce learning support on farmers in order to achieve high performance of learning and job management through farm educations.