• Title/Summary/Keyword: model method

Search Result 44,867, Processing Time 0.067 seconds

Smith-Predictor Controller Design Using New Reduction Model (새로운 축소 모델을 이용한 Smith-Predictor 제어기 설계)

  • Choi Jeoung-Nae;Cho Joon-Ho;Hwang Hyung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • To improve the performance of PID controller of high order systems by model reduction, we proposed two model reduction methods. One, Original model with two point $({\angle}G(jw)=\;-{\pi}/2,\;-{\pi})$ in Nyquist curve used gradient base method and genetic algorithm. The other, Original model without two point$({\angle}G(jw)=\;-{\pi}/2,\;-{\pi})$in Nyquist curve used to add very small dead time. This method has annexed very small dead time on the base model for reduction, and we remove it after getting the reduced model, and , we improved Smith-predictor for a dead-time compensator using genetic algorithms. This method considered four points$({\angle}G(jw)=0,\;-\pi/2,\;-\pi,\;-3\pi/2)$ in the Nyquist curve to reduce steady state error between original and reduced model. It is shown that the proposed methods have more performance than the conventional method.

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm

  • Liang, Yabin;Feng, Qian;Li, Heng;Jiang, Jian
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2019
  • As one of the most important parameters in structural health monitoring, structural frequency has many advantages, such as convenient to be measured, high precision, and insensitive to noise. In addition, frequency-change-ratio based method had been validated to have the ability to identify the damage occurrence and location. However, building a precise enough finite elemental model (FEM) for the test structure is still a huge challenge for this frequency-change-ratio based damage detection technique. In order to overcome this disadvantage and extend the application for frequencies in structural health monitoring area, a novel method was developed in this paper by combining the cross-model cross-mode (CMCM) model updating algorithm with the frequency-change-ratio based method. At first, assuming the physical parameters, including the element mass and stiffness, of the test structure had been known with a certain value, then an initial to-be-updated model with these assumed parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very limited modal frequencies of the test structure were provided.

Optimization of Fuzzy Systems by Means of GA and Weighting Factor (유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화)

  • Park, Byoung-Jun;Oh, Sung-Kwun;Ahn, Tae-Chon;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

A Method of Tracking Object using Particle Filter and Adaptive Observation Model

  • Kim, Hyoyeon;Kim, Kisang;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • In this paper, we propose an efficient method that is tracking an object in real time using particle filter and adaptive observation model. When tracking object, it happens object shape variation by camera or object movement in variety environments. The traditional method has an error of tracking from these variation, because it has fixed observation model about the selected object by the user in the initial frame. In order to overcome these problems, we propose a method that updates the observation model by calculating the similarity between the used observation model and the eight-way of edge model from the current position. If the similarity is higher than the threshold value, tracking the object using updated observation model to reset observation model. On the contrary to this, the algorithm which consists of a process is to maintain the used observation model. Finally, this paper demonstrates the performance of the stable tracking through comparison with the traditional method by using a number of experimental data.

A Model-Based Image Steganography Method Using Watson's Visual Model

  • Fakhredanesh, Mohammad;Safabakhsh, Reza;Rahmati, Mohammad
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.479-489
    • /
    • 2014
  • This paper presents a model-based image steganography method based on Watson's visual model. Model-based steganography assumes a model for cover image statistics. This approach, however, has some weaknesses, including perceptual detectability. We propose to use Watson's visual model to improve perceptual undetectability of model-based steganography. The proposed method prevents visually perceptible changes during embedding. First, the maximum acceptable change in each discrete cosine transform coefficient is extracted based on Watson's visual model. Then, a model is fitted to a low-precision histogram of such coefficients and the message bits are encoded to this model. Finally, the encoded message bits are embedded in those coefficients whose maximum possible changes are visually imperceptible. Experimental results show that changes resulting from the proposed method are perceptually undetectable, whereas model-based steganography retains perceptually detectable changes. This perceptual undetectability is achieved while the perceptual quality - based on the structural similarity measure - and the security - based on two steganalysis methods - do not show any significant changes.

Comparison Study of O/D Estimation Methods for Building a Large-Sized Microscopic Traffic Simulation Network: Cases of Gravity Model and QUEEENSOD Method (대규모 미시교통시뮬레이션모형 구축을 위한 O/D 추정 방법 성능 비교 - 중력모형과 QUEENSOD 방법을 중심으로 -)

  • Yoon, Jung Eun;Lee, Cheol Ki;Lee, Hwan Pil;Kim, Kyung Hyun;Park, Wonil;Yun, Ilsoo
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.91-101
    • /
    • 2016
  • PURPOSES : The aim of this study was to compare the performance of the QUEENSOD method and the gravity model in estimating Origin-Destination (O/D) tables for a large-sized microscopic traffic simulation network. METHODS : In this study, an expressway network was simulated using the microscopic traffic simulation model, VISSIM. The gravity model and QUEENSOD method were used to estimate the O/D pairs between internal and between external zones. RESULTS: After obtaining estimations of the O/D table by using both the gravity model and the QUEENSOD method, the value of the root mean square error (RMSE) for O/D pairs between internal zones were compared. For the gravity model and the QUEENSOD method, the RMSE obtained were 386.0 and 241.2, respectively. The O/D tables estimated using both methods were then entered into the VISSIM networks and calibrated with measured travel time. The resulting estimated travel times were then compared. For the gravity model and the QUEENSOD method, the estimated travel times showed 1.16% and 0.45% deviation from the surveyed travel time, respectively. CONCLUSIONS : In building a large-sized microscopic traffic simulation network, an O/D matrix is essential in order to produce reliable analysis results. When link counts from diverse ITS facilities are available, the QUEENSOD method outperforms the gravity model.

국내 상호접속료 산정방식의 문제점 분석

  • Yang, Won-Seok;Jeong, Ji-Hyeong
    • Proceedings of the Korea Database Society Conference
    • /
    • 2010.06a
    • /
    • pp.181-185
    • /
    • 2010
  • The current method for accessing interconnection charges in Korea, called a hybrid model in this paper, mixes a top-down with a bottom-up LRIC model. The method has given stable charges so far. However, according to the fundamental changes of the market, policy, and network technology in the telecommunications industry, it requires analyzing the validity of the method. We investigate the problems of the top-clown, bottom-up, and hybrid model used in Korea and analyze their effect on regulation policy.

  • PDF

Design of PID Controller to Ensure Specified Phase margin and Iso-damping property Using Reduction Model (축소 모델을 이용한 위상여유와 등 제동 특성을 만족하는 PID 제어기 설계)

  • Cho, Joon-Ho;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.113-118
    • /
    • 2007
  • In this paper, a new method is proposed for robust proportional- integral - derivative (PID) control that is to ensure specified phase margin and iso - damping property using reduction model. This method is based on the second order plus dead time(SOPDT) reduction model of the high order model. Reduction model used to ensure iso-damping property in the feature frequency. Simulation results gives proof of effectiveness of proposed method.

  • PDF

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.

A METHOD OF DEVELOPING SOFT SENSOR MODEL USING FUZZY NEURAL NETWORK

  • Chang, Yuqing;Wang, Fuli;Lin, Tian
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.103-109
    • /
    • 2001
  • Soft sensor is an effective method to deal with the estimation of variables, which are difficult to measure because of the reasons of economy or technology. Fuzzy logic system can be used to develop the soft sensor model by infinite rules, but the fuzzy dividing of variable sets is a key problem to achieve an accurate fuzzy logic model, In this paper, we proposed a new method to develop soft sensor model based on fuzzy neural network. First, using a novel method to divide the variable fuzzy sets by the process input and output data. Second, developing the fuzzy logic model based on that fuzzy set dividing. After that, expressing the fuzzy system with a fuzzy neural network and getting the initial soft sensor model based FNN. Last, adjusting the relative parameters of soft sensor model by the BP learning method. The effectiveness of the method proposed and the preferable generalization ability of soft sensor model built are demonstrated by the simulation.

  • PDF