• Title/Summary/Keyword: model frequencies

Search Result 1,908, Processing Time 0.031 seconds

FE MODEL UPDATING OF ROTOR SHAFT USING OPTIMIZATION TECHNIQUES (최적화 기법을 이용한 로터 축 유한요소모델 개선)

  • Kim, Yong-Han;Feng, Fu-Zhou;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.104-108
    • /
    • 2003
  • Finite element (FE) model updating is a procedure to minimize the differences between analytical and experimental results, which can be usually posed as an optimization problem. This paper aims to introduce a hybrid optimization algorithm (GA-SA), which consists of a Genetic algorithm (GA) stage and an Adaptive Simulated Annealing (ASA) stage, to FE model updating for a shrunk shaft. A good agreement of the first four natural frequencies has been achieved obtained from GASA based updated model (FEgasa) and experiment. In order to prove the validity of GA-SA, comparisons of natural frequencies obtained from the initial FE model (FEinit), GA based updated model (FEga) and ASA based updated model (FEasa) are carried out. Simultaneously, the FRF comparisons obtained from different FE models and experiment are also shown. It is concluded that the GA, ASA, GA-SA are powerful optimization techniques which can be successfully applied to FE model updating, the natural frequencies and FRF obtained from all the updated models show much better agreement with experiment than that obtained from FEinit model. However, FEgasa is proved to be the most reasonable FE model, and also FEasa model is better than FEga model.

  • PDF

An LSP Extraction Method Based on the Spectral Difference (스펙트럼차에 기초한 LSP 추출방법)

  • 김홍국
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.253-258
    • /
    • 1993
  • In this paper, we propose a new method to extract the line spectrum pair (LSP) frequencies. When speech signal is analyzed by the autocorrelation method, the spectral difference in the logarithmic spectra of the model at steps p and p-1 oscillates. There are p-1 frequency points where the values of the spectral dfference take on either maximum or minimum between 0 and half sampling frequency. We show that these frequencies are excatly the LSP frequencies of order p-1, which can be found by searching the frequencies where the spectral difference reaches either maxima or minima. also, the LSP frequencies of order p can be obtained from this spectral difference. In this case, we derive the expression governing the pth order LSP frequencies. The efficient search for finding the LSP frequencies of order p can be done by proving the property that the LSP frequencies of order p and p-1 are interlaced with each other.

  • PDF

Molecular Spinless Energies of the Morse Potential Energy Model

  • Jia, Chun-Sheng;Cao, Si-Yi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3425-3428
    • /
    • 2013
  • We solve the Klein-Gordon equation with the Morse empirical potential energy model. The bound state energy equation has been obtained in terms of the supersymmetric shape invariance approach. The relativistic vibrational transition frequencies for the $X^1{\sum}^+$ state of ScI molecule have been computed by using the Morse potential model. The calculated relativistic vibrational transition frequencies are in good agreement with the experimental RKR values.

Microwave Radar Backscatter Model of Multiyear Sea Ice

  • Kim, Young-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.4 no.1
    • /
    • pp.1-16
    • /
    • 1988
  • Multiyear ice is quite thick in general, and it needs to be distinguished from thinner types of ice because it represents a severe navigational hazard. Here, models are described for the radar backscatter from multiyear sea ice, based on simple scattering layers. Under cold conditions, the radiative transfer volume-scatter model can describe the backscattering from multiyear ice for frequencies higher than about X-band, while the surface scattering contribution has to be included for lower frequencies. A simple semi-empirical model is shown to be a good approximation to the radiative transfer model in describing the volume scattering from multiyear ice.

Simulation of Dynamic Characteristics of Agricultural Tractors(II) - Verification of Dynamic Model - (농용 트랙터의 동특성 시뮬레이션(II) - 동적 모델의 검증 -)

  • 박홍제;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.549-560
    • /
    • 1998
  • The dynamic model of a tractor-trailer system developed in the first part of this paper was verified in this article by comparing the simulated acceleration responses of the system with actually measured ones. A commercially available tractor and a trailer were used for the verification test. Values of the model parameters were measured or theoretically derived if the measurement was practically impossible. The tractor-trailer system was operated with different forward speeds over three equally spaced half-sine bumps on the flat concrete surface. Results of the verification tests showed that autospectra of the measured and simulated accelerations of the tractor-trailer system agreed well up to the frequencies slightly feater than the fundamental frequencies of the ground excitations and at the frequencies of engine excitations. The mean of normalized errors of the simulated responses to the measured ones was estimated to be less than 10% for all the test runs. The peak responses in the autospectra also coincided well both in the frequency and magnitude.

  • PDF

Vibration Analysis of a Gear Train - Spindle System for an NC Lathe Gear Box (NC선반 기어박스의 기어열 - 축계 진동해석)

  • 최영휴;박선균;배병태;정택수;김청수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.216-221
    • /
    • 2000
  • In this study, two mathematical models are first constructed to analyze vibration characteristics of a gear train - spindle system of an NC lathe gear box. One is a lumped parameter model which is used for calculating natural frequencies of the torsional vibration, the other is a finite element model for analyzing lateral vibration and critical speeds of the spindle system. In addition, this study examines some possible resonance conditions such as gear mesh frequencies, 1X shaft rpm frequencies over whole operating speed range, and so on. The results may be helpful to design a machine tool gear box with low noise and vibration.

  • PDF

Assessment on Natural Frequencies of Structures using Field Measurement and FE Analysis

  • Kim, Do Hyun;Kim, Ji Young
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.305-310
    • /
    • 2014
  • Wind-induced responses of a structure are often evaluated through dynamic analysis, where measured wind forces obtained from a wind-tunnel test and dynamic properties obtained from a FE (Finite Element) model are utilized. However, the FE model generally shows considerable discrepancies in the estimation of natural frequencies compared to field measurements due to some assumptions and simplifications. In this paper, a calibration method that can improve the estimation of natural frequencies in the FE model is proposed, and specific cases are studied for its validity with comparison to the field measurement results.

Frequency variation in construction stages and model validation for steel buildings

  • Aras, Fuat
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.647-662
    • /
    • 2016
  • This study aims to monitor the variation of modal frequencies of steel buildings during their construction sequence. In this respect, construction of a steel building is followed by vibration based measurements. The monitored building is a three-story educational building within a building group whose structural system consists of steel moment resisting steel frames and eccentric braces. Five different acceleration measurements in two perpendicular directions are taken on five different construction stages, starting from the erection of the columns and beams ending with the completion of the construction. The recorded measurements are transferred into frequency domain and the dominant frequencies for each case have been determined. The change in the dominant frequencies is evaluated with the existing construction stages and performed constructional works between the stages. The last measurement, performed on the building in service, revealed the first two dominant frequencies as mutual in X and Y direction, showing that these dynamic modes are torsional modes. This result is investigated by numerical analysis performed with finite element model of the building constructed for design purpose. Lower frequencies and different mode shapes are determined from numerical analysis. The reason of lower frequencies is discussed and the vibration survey is extended to determine the effects of an adjacent building. The results showed that the building is in strong relation with an adjoining building in spite of a designed construction joint.

Application of Kelvin's theory for structural assessment of FG rotating cylindrical shell: Vibration control

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Harbaoui, Imene
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.499-507
    • /
    • 2020
  • In current study, utilizing the Kelvin's theory with polynomial, exponential and trigonometric volume fraction laws for functionally graded cylindrical shell vibrations. Effects of different parameters for ratios of length- and height-to-radius and angular speed versus fundamental natural frequencies been determined for two categories of cylindrical shells with clamped-free edge condition. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing length-to-radius ratio. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases. The frequencies are same when the cylinder is stationary. The frequencies increases and decreases on changing the constituent materials. The frequency results are verified with the earlier literature for the applicability of present model.

A nonlocal system for the identification of active vibration response of chiral double walled CNTs

  • Alghamdi, Sami;Hussain, Muzamal;Khadimallah, Mohamed A.;Asghar, Sehar;Ghandourah, Emad;Alzahrani, Ahmed Obaid M.;Alzahrani, M.A.
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.353-361
    • /
    • 2022
  • In this study, an estimation regarding nonlocal shell model based on wave propagation approach has been considered for vibrational behavior of the double walled carbon nanotubes with distinct nonlocal parameters. Vibrations of double walled carbon nanotubes for chiral indices (8, 3) have been analyzed. The significance of small scale is being perceived by developing nonlocal Love shell model. The influence of changing mechanical parameter Poisson's ratio has been investigated in detail. The dominance of boundary conditions via nonlocal parameter is shown graphically. It is found that on increasing the Poisson's ratio, the frequencies increases. It is noted that the frequencies of clamped-clamped frequencies are higher than that of simply-supported and clamped-free edge conditions. The outcomes of frequencies are tested with earlier computations.