• Title/Summary/Keyword: model errors

Search Result 3,147, Processing Time 0.031 seconds

MODIFIED POSTERIOR TIME-STEP ADJUSTMENT TECHNIQUE FOR MDOF SYSTEM IN SUBSTRUCTURING PSEUDODYNAMIC TEST (부분구조 유사동적법에 있어 다자유도 시스템에 대한 수정 시간증분 조정기법)

  • 이원호;강정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.473-480
    • /
    • 1998
  • The substructuring pseudodynamic test is a hybrid testing method consisting of a numerical simulation of the earthquake response of an analytical model and a loading test of a specimen. The substructuring pseudodynamic testing technique has been applied to various seismic experiments since it has advantages over the shaking table test to study dynamic behaviors of relatively large scale structures. However, experimental errors are inevitable in substructuring pseudodynamic testing. Some of these errors can be monitored during the test, but, due to limitations in control system, they cannot be eliminated. For example, one cannot control exactly the displacements that are actually imposed on the structures at each time step. This paper focuses on a technique to minimize the cumulative effect of such control errors for MDOF system. For this purpose, the modified posterior adjustment of the time increment from a target value $\Delta$t$_{n}$ to an adjusted value is performed to minimize the effect of the control errors for MDOF system.for MDOF system.

  • PDF

Robustness of Positive Position Feedback Control in the Independent Modal Space (독립된 모달공간에서 양 위치피드백 제어기법의 강인성)

  • 황재혁;백승호
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.177-185
    • /
    • 1994
  • In this study, the effect of parameter errors on the closed-loop behavior of flexible structure is analyzed for IMSC(Independent Modal Space Control) with PPF(Positive Position Feedback). If the control force designed on the basis of structure model with the parameter errors is applied to control the actual system, the closed-loop performance of the actural system will be degraded depending on the degree of the errors. An asymptotic stability condition has been derived, using Lyapunov approach, which is independent of the dynamic characteristics of the structure being controlled. The extent of deviation of the closed-loop performance from the designed one is also derived and evaluated using operator techniques. It has been found that the extent of the deviation is proportational to the magnitude of the parameter errors, and that the proportional coefficient depends on the control algorithm.

  • PDF

A comparison study of approximate and Monte Carlo radiative transfer methods for late type galaxy models

  • Lee, Dukhang;Baes, Maarten;Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.49.3-50
    • /
    • 2016
  • Two major radiative transfer (RT) techniques have been developted to model late-type galaxies: approximate RT and Monte Carlo (MC) RT. In the approximate RT, first proposed by Kylafis & Bahcall, only two terms of unscattered (direct) and single-scattered intensities are computed and higher-order multiple scattering components are approximated, saving computing time and cost compared to MC RT. However, the approximate RT can yield errors in regions where multiple scattering effect is significant. In order to examine how significant the errors of the approximate RT are, we compare results of the approximate RT with those of SKIRT, a state-of-the-art MC RT code, which is basically free from the approximation errors by fully incorporating all the multiple scattered intensities. In this study, we present quantitative errors in the approximate RT for late type galaxy models with various optical depths and inclination angles. We report that the approximate RT is not reliable if the central face-on optical depth is intermediate or high (${\tau}_V$ > 3).

  • PDF

Monte-Carlo Simulation and measuring for Error Analysis of 3-axis SCARA Robot using Observability (관측성을 이용한 3축 SCARA Robot의 오차분석을 위한 Monte-Carlo simulation 및 측정)

  • Ju, Ji-Hun;Chung, Won-Jee;Kim, Jung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.8-14
    • /
    • 2008
  • This paper aims at finding out dominant robot configurations with maximal position errors, which can be attributed to the parameter errors, by using Monte-Carlo simulation for error analysis of a 3-axis SCARA(Selective Compliance Assembly Robot Arm) type robot. In particular, the Monte-Carlo simulation is used for virtually measuring on the position errors, instead of physical measurement. In order to measure the observability of the model parameters with respect to a set of robot configurations, we propose the observability index which is defined as the product of singular values for error propagation matrices. Thus the index can be used for discriminating dominant robot configurations from a set of simulated ones in conjunction with standard deviation of positional errors, This paper analyzed error by robot positional error.

Gait State Classification by HMMS for Pedestrian Inertial Navigation System (보행용 관성 항법 시스템을 위한 HMMS를 통한 걸음 단계 구분)

  • Park, Sang-Kyeong;Suh, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1010-1018
    • /
    • 2009
  • An inertial navigation system for pedestrian position tracking is proposed, where the position is computed using inertial sensors mounted on shoes. Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it needs to reset errors frequently. During normal walking, there is an almost periodic zero velocity instance when a foot touches the floor. Using this fact, estimation errors are reduced and this method is called the zero velocity updating algorithm. When implementing this zero velocity updating algorithm, it is important to know when is the zero velocity interval. The gait states are modeled as a Markov process and each state is estimated using the hidden Markov model smoother. With this gait estimation, the zero or nearly zero velocity interval is more accurately estimated, which helps to reduce the position estimation error.

Acceleration Sensor Based Measurement and Noise Reduction of Dynamic Weights (가속도 센서에 기반한 동하중의 측정 및 잡음 감소)

  • Na, Seung-You;Shin, Dae-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Due to various types of errors added to dynamic weight measurement data, proper methods to reduce measurement errors are required to produce reliable weights. To cope with parasitic types of errors in real systems, information provided by the various sensors is utilized and combined in such a way to reduce the measurement errors of load cells. In addition to four channels of load cells from a trailer, an accelerometer is used to obtain the information to compensate the error induced from vertical movement of the vehicle due to the variation of ground level. A model trailer system is run to verify the effectiveness of the proposed method to reduce noise of dynamic weight measurements. Experiments show that the processed error magnitudes of less than 20 g can be obtained for 10 Kg experimental loads.

Estimation of Product Claim Rate with Consumer's Inspection Error (소비자(消費者) 검사오류(檢査誤謬)를 고려한 제품(製品)의 반환율(返還率) 추정(推定)에 관한 연구(硏究))

  • Kim, Je-Sung;Lee, Chang-Hun
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.1
    • /
    • pp.22-34
    • /
    • 1993
  • In claiming for the purchased products, two types of errors can occur from the consumer's point of view. One is to accept defective products and the other one is to reject good products. Due to such errors, Claim rate for the products is expected to be different from that the producer has originally anticipated. In this paper, the probability distribution of the number of claimed products when such consumer's inspection errors are involved is derived. Then, a simple model is provided to estimate the claim rate when such errors are present.

  • PDF

A Study on the Predictional Model for Accuracy of Earthwork Calculation by Digtal Terrain Model (수치지형모델에 의한 토공양계산 정확도의 예측모델에 관한 연구)

  • 오창수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.5 no.1
    • /
    • pp.49-58
    • /
    • 1987
  • The use of digital terrain model has been enlarged in calculating the earthwork due to the development of aerial photogrammetry. The calculation of earthwork plays a major role in plan or design of many civil engineering projects, and thus it has become very important to advance the accuracy of earthwork calculation. In this study, I have made an analysis of influences which DTM makes on the height accuracy of data ; on the basis of the analysis, we can develop the predictive model formula of profile shape coefficients by which the accuracy of earthwork can he preestimated in practical design according to data density of terrain, making thereby good contribution to the calculation of both earthwork amount and its expenses. This study shows that the accuracy of earthwork is more affected by the distances of cross-sections than by data density and that the effects by the standard errors of height decrease in proportion as the distances of cross-sections are great It also shows that when the prediction model formula of profile shape coefficients is applied to ordinary cases, the differences between the predicted earthwork errors and the errors by ordinary est imation are at 0.8374~3.1437$cm^3$/m, on flat terrain and 1.5628~6.967$cm^3$/m, on mountainous terrain-so little as to be ignored ; thus it can be safely ascertained that the accurate earthwork errors can be predicted applying the prediction model formula made in this study.

  • PDF

A new Observation Model to Improve the Consistency of EKF-SLAM Algorithm in Large-scale Environments (광범위 환경에서 EKF-SLAM의 일관성 향상을 위한 새로운 관찰모델)

  • Nam, Chang-Joo;Kang, Jae-Hyeon;Doh, Nak-Ju Lett
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • This paper suggests a new observation model for Extended Kalman Filter based Simultaneous Localization and Mapping (EKF-SLAM). Since the EKF framework linearizes non-linear functions around the current estimate, the conventional line model has large linearization errors when a mobile robot locates faraway from its initial position. On the other hand, the model that we propose yields less linearization error with respect to the landmark position and thus suitable in a large-scale environment. To achieve it, we build up a three-dimensional space by adding a virtual axis to the robot's two-dimensional coordinate system and extract a plane by using a detected line on the two-dimensional space and the virtual axis. Since Jacobian matrix with respect to the landmark position has small value, we can estimate the position of landmarks better than the conventional line model. The simulation results verify that the new model yields less linearization errors than the conventional line model.

Estimating Automobile Insurance Premiums Based on Time Series Regression (시계열 회귀모형에 근거한 자동차 보험료 추정)

  • Kim, Yeong-Hwa;Park, Wonseo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.237-252
    • /
    • 2013
  • An estimation model for premiums and components is essential to determine reasonable insurance premiums. In this study, we introduce diverse models for the estimation of property damage premiums(premium, depth and frequency) that include a regression model using a dummy variable, additive independent variable model, autoregressive error model, seasonal ARIMA model and intervention model. In addition, the actual property damage premium data was used to estimate the premium, depth and frequency for each model. The estimation results of the models are comparatively examined by comparing the RMSE(Root Mean Squared Errors) of estimates and actual data. Based on real data analysis, we found that the autoregressive error model showed the best performance.