Evapotranspiration is a key element in designing and operating agricultural hydraulic structures. The profound effect of climate change to local agro-hydrological systems makes it inevitable to study the potential variability in evapotranspiration rate in order to develop policies on future agricultural water management as well as to evaluate changes in agricultural environment. The APEX-Paddy model was used to simulate local evapotranspiration responses to climate change scenarios. Nine Global Climate Models(GCMs) downscaled using a non-parametric quantile mapping method and a Multi?Model Ensemble method(MME) were used for an uncertainty analysis in the climate scenarios. Results indicate that APEX-Paddy and the downscaled 9 GCMs reproduce evapotranspiration accurately for historical period(1976~2005). For future periods, simulated evapotranspiration rate under the RCP 4.5 scenario showed increasing trends by -1.31%, 2.21% and 4.32% for 2025s(2011~2040), 2055s(2041~2070) and 2085s(2071~2100), respectively, compared with historical(441.6 mm). Similar trends were found under the RCP 8.5 scenario with the rates of increase by 0.00%, 4.67%, and 7.41% for the near?term, mid?term, and long?term periods. Monthly evapotranspiration was predicted to be the highest in August, July was the month having a strong upward trend while. September and October were the months showing downward trends in evapotranspiration are mainly resulted from the shortening of the growth period of paddy rice due to temperature increase and stomatal closer as ambient $CO_2$ concentration increases in the future.
리튬이온 배터리(LIB)는 다른 배터리에 비해 수명이 길고, 에너지 밀도가 높으며, 자체 방전율이 낮아, 에너지 저장장치(ESS)로 선호되고 있다. 하지만, 2017~2019년 기간 동안 국내에서만도 28건의 화재사고가 발생하였으며, LIB의 운영 중 안전성 및 신뢰성을 보장하기 위해 LIB의 정확한 용량추정은 필수요소이다. 본 연구에서는 LIB의 충방전 cycle에 따른 용량변화를 예측하는 기계학습 기반 모델의 설계에 있어 중요한 요소인 최적 머신러닝 모델의 선정을 위해, Decision Tree, 앙상블학습법, Support Vector Regression, Gaussian Process Regression (GPR) 각각을 이용한 예측모델을 구현하고 성능비교를 실시하였다. 학습을 위해 NASA에서 제공하는 시험데이터를 사용하였으며, GPR이 가장 좋은 예측성능을 보였다. 이를 바탕으로 추가 시험데이터 학습을 통해 개선된 LIB 용량예측과 잔여 수명추정 모델을 개발하여, 운영 중 이상 감지 및 모니터링 성능을 높여, 보다 안전하고 안정된 ESS 운용에 활용하고자 한다.
실현 변동성은 강한 종속성을 가짐이 잘 알려져 있으며, 글로벌 금융 시장과 유기적으로 연관이 되어 있을 뿐만 아니라 환율, 유가, 이자율 등의 거시적인 지표와도 밀접한 관계가 있다. 본 논문은 이러한 실현 변동성의 효과적인 예측을 위해서 오토인코더를 이용한 FAHAR (autoencoder factor-augmented heterogeneous autoregressive, AE-FAHAR) 모형을 제안한다. AE-FAHAR 모형은 강한 종속성을 HAR 구조로 반영하고, 외부 효과에 대한 영향을 오토인코더를 사용하여 몇 개의 요인으로 추출하여 이를 반영한다. 오토인코더는 비선형 방법으로 요인을 추정하기에 많은 계산 시간이 필요하지만 복잡하고 비정상성을 가질 수 있는 고차원 시계열 자료의 요약에 더 적합하다. 이는 곧 실증 자료 분석을 통해 AE-FAHAR 모형이 예측 오차를 줄임을 확인할 수 있었다. 또한 계산 시간을 줄이고 추정 오차를 줄이기 위해 오토인코더에 사전학습 및 앙상블을 적용하는 등의 방법에 대해서도 논의하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권6호
/
pp.1800-1817
/
2022
With the development of the economy and the improvement of living standards, the hot issues in the subject area have become the main research direction, and the mining of the hot issues in the subject currently has problems such as a large amount of data and a complex algorithm structure. Therefore, in response to this problem, this study proposes a method for extracting hot keywords in scientific journals based on the improved BERT model.It can also provide reference for researchers,and the research method improves the overall similarity measure of the ensemble,introducing compound keyword word density, combining word segmentation, word sense set distance, and density clustering to construct an improved BERT framework, establish a composite keyword heat analysis model based on I-BERT framework.Taking the 14420 articles published in 21 kinds of social science management periodicals collected by CNKI(China National Knowledge Infrastructure) in 2017-2019 as the experimental data, the superiority of the proposed method is verified by the data of word spacing, class spacing, extraction accuracy and recall of hot keywords. In the experimental process of this research, it can be found that the method proposed in this paper has a higher accuracy than other methods in extracting hot keywords, which can ensure the timeliness and accuracy of scientific journals in capturing hot topics in the discipline, and finally pass Use information technology to master popular key words.
머신러닝과 딥러닝의 기술이 보편화되면서 산업제어시스템의 이상(비정상) 탐지 연구에도 적용이 되기 시작하였다. 국내에서는 산업제어시스템의 이상 탐지를 위한 인공지능 연구를 활성화시키기 위하여 HAI 데이터셋을 개발하여 공개하였고, 산업제어시스템 보안위협 탐지 AI 경진대회를 시행하고 있다. 이상 탐지 연구들은 대개 기존의 딥러닝 학습 알고리즘을 변형하거나 다른 알고리즘과 함께 적용하는 앙상블 학습 모델의 방법을 통해 향상된 성능의 학습 모델을 만드는 연구가 대부분 이었다. 본 연구에서는 학습 모델과 데이터 전처리(pre-processing)의 개선을 통한 방법이 아니라, 비정상 데이터를 탐지하여 라벨링 한 결과를 보정하는 후처리(post-processing) 방법으로 이상 탐지의 성능을 개선시키는 연구를 진행하였고, 그 결과 기존 모델의 이상 탐지 성능 대비 약 10%이상의 향상된 결과를 확인하였다.
기업 부도의 효율적인 예측은 금융기관의 적절한 대출 결정과 여신 부실률 감소 측면에서 중요한 부분이다. 많은 연구에서 인공지능 기술을 활용한 분류모델 연구를 진행하였다. 금융 산업 특성상 새로운 예측 모델의 성능이 우수하더라도 어떤 근거로 결과를 출력했는지 직관적인 설명이 수반되어야 한다. 최근 미국, EU, 한국 등 에서는 공통적으로 알고리즘의 설명요구권을 제시하고 있어 금융권 AI 활용에 투명성을 확보하여야 한다. 본 논문에서는 외부에 오픈된 기업부도 데이터를 활용하여 인공지능 기반의 해석 가능한 분류 예측 모델을 제안하였다. 먼저 데이터 전처리 작업, 5겹 교차검증 등을 수행하고 로지스틱 회귀, SVM, XGBoost, LightGBM 등 10가지 지도학습 분류모델 최적화를 통해 분류 성능을 비교하였다. 그 결과 LightGBM이 가장 우수한 모델로 확인되었고, 설명 가능한 인공지능 기법인 SHAP을 적용하여 부도예측 과정에 대한 사후 설명을 제공하였다.
자료동화(data assimilation) 기법은 관측 자료와 예측 모형의 정보를 동시에 활용, 모형의 상태량(state variables)이나 매개변수(model parameters)를 실시간으로 업데이트하는 Bayesian 필터링 이론에 근거한 방법으로, 최근 이를 활용한 수문 모의 정확도 향상 기술이 빠르게 발전하고 있다. 본 연구에서는 앙상블 자료동화의 정확성을 향상시키기 위한 세부 방법인 along-the-stream localization과 inflation 기법의 분포형 수문 모형에 대한 적용성을 대규모 지역 단위(regional-scale) 모의를 통해 검토한다. 분포형 수문모형과 자료동화 framework로는 WRF-Hydro(Weather Research and Forecasting Model Hydrological Modeling System)와 DART(Data Assimilation Research Testbed)를 각각 적용한다. WRF-Hydro는 미국의 전 대륙지역(CONUS; continental United States)에 대한 수문 모델링 framework인 National Water Model의 핵심엔진이고, DART는 미국 National Center for Atmospheric Research(NCAR) 연구소에서 개발한 범용 자료동화 도구이다. 본 연구에서는 지표수 수문모형의 자료동화를 위해 개발된 기법인 along-the-stream localization과 inflation 기법이 하도 추적에 미치는 영향을 분석한다. along-the stream localization 기법은 공간적 근접도 외에 하도의 수문학적 연관관계를 고려하는 localization 기법으로, 상대적으로 수문학적 상관도가 떨어지는 하도에 대한 과도한 자료동화를 줄여줄 수 있다. inflation 기법은 앙상블의 다양성을 증가시키는 기법으로, 칼만 필터(Kalman filter)에 의한 업데이트의 이전이나 이후 적용하여 앙상블 예측의 정확도를 추가적으로 향상시킬 수 있다. 본 고에서는 앙상블 자료동화 기법을 지표수 수문 모의에 적용할 경우 남아 있는 난제와 적용 가능한 방법에 대해 중점적으로 논의한다.
Jaekyeong Baek;Wan-Gyu Sang;Dongwon Kwon;Sungyul Chanag;Hyeojin Bak;Ho-young Ban;Jung-Il Cho
한국작물학회:학술대회논문집
/
한국작물학회 2022년도 추계학술대회
/
pp.88-88
/
2022
Detection of stress responses in crops is important to diagnose crop growth and evaluate yield. Also, the multi-spectral sensor is effectively known to evaluate stress caused by nutrient and moisture in crops or biological agents such as weeds or diseases. Therefore, in this experiment, multispectral images were taken by an unmanned aerial vehicle(UAV) under field condition. The experiment was conducted in the long-term fertilizer field in the National Institute of Crop Science, and experiment area was divided into different status of NPK(Control, N-deficiency, P-deficiency, K-deficiency, Non-fertilizer). Total 11 vegetation indices were created with RGB and NIR reflectance values using python. Variations in nutrient content in plants affect the amount of light reflected or absorbed for each wavelength band. Therefore, the objective of this experiment was to evaluate vegetation indices derived from multispectral reflectance data as input into machine learning algorithm for the classification of nutritional deficiency in rice. RandomForest model was used as a representative ensemble model, and parameters were adjusted through hyperparameter tuning such as RandomSearchCV. As a result, training accuracy was 0.95 and test accuracy was 0.80, and IPCA, NDRE, and EVI were included in the top three indices for feature importance. Also, precision, recall, and f1-score, which are indicators for evaluating the performance of the classification model, showed a distribution of 0.7-0.9 for each class.
2020년 발생한 코로나19는 전세계적으로 지속적인 피해를 미쳤으며, 특히 하늘길 봉쇄 및 외출 자제로 인해 스마트 관광산업은 경제적 직격탄을 맞았다. 해외여행과 국내여행이 크게 감소된 상황에서 계속되는 적자로 인해 휴업과 폐업을 하는 관광호텔들이 늘어나고 있는 상황이다. 따라서 본 연구에서는 행정안전부의 인허가 데이터를 수집한 후 시각화하여 관광숙박업의 운영 현황을 파악하였다. 머신러닝 분류 알고리즘을 적용하여 관광호텔의 생존 예측 모델을 구현하였고 앙상블 알고리즘을 활용하여 예측 모델의 성능을 최적화하였으며 5-Fold 교차검증으로 모델의 성능을 평가하였다. 관광호텔의 생존율이 다소 감소할 것으로 예측되었으나 실제 생존율을 코로나19 이전과 큰 차이를 보이지 않는 것으로 분석되었다. 본 논문의 호텔업 영업 상태 예측을 통해 관광숙박업 전체의 운영 가능성 및 발전 동향을 파악할 수 있는 근거로 활용할 수 있다.
효과적인 동물 생태계 분석을 위해서는 동물 서식 현황을 자동으로 파악할 수 있는 동물 관제 기술이 중요하다. 특히 울음소리로 종을 판별하는 동물 소리 분류 기술은 영상을 통한 판별이 어려운 환경에서 큰 주목을 받고 있다. 기존 연구들은 단일 딥러닝 모델을 사용하여 동물 소리를 분류하였으나, 야외 환경에서 수집된 동물 소리는 많은 배경 잡음을 포함하여 단일 모델의 판별력을 악화시키며, 종에 따른 데이터 불균형으로 인해 모델의 편향된 학습을 야기한다. 이에, 본 논문에서는 클래스의 데이터 수를 고려하여 페널티를 부여하는 Focal Loss를 사용한 여러 분류 모델의 예측결과를 앙상블을 통해 결합하여 잡음이 많은 동물 소리를 효과적으로 분류할 수 있는 기법을 제안한다. 공개 데이터 셋을 사용한 실험에서, 제안된 기법은 단일 모델의 평균 성능에 비해 Recall 기준으로 최대 22.6%의 성능 개선을 달성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.