• Title/Summary/Keyword: model concrete

Search Result 5,283, Processing Time 0.033 seconds

Nonlinear seismic analysis of a super 13-element reinforced concrete beam-column joint model

  • Adom-Asamoah, Mark;Banahene, Jack Osei
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.905-924
    • /
    • 2016
  • Several two-dimensional analytical beam column joint models with varying complexities have been proposed in quantifying joint flexibility during seismic vulnerability assessment of non-ductile reinforced concrete (RC) frames. Notable models are the single component rotational spring element and the super element joint model that can effectively capture the governing inelastic mechanisms under severe ground motions. Even though both models have been extensively calibrated and verified using quasi-static test of joint sub-assemblages, a comparative study of the inelastic seismic responses under nonlinear time history analysis (NTHA) of RC frames has not been thoroughly evaluated. This study employs three hypothetical case study RC frames subjected to increasing ground motion intensities to study their inherent variations. Results indicate that the super element joint model overestimates the transient drift ratio at the first story and becomes highly un-conservative by under-predicting the drift ratios at the roof level when compared to the single-component model and the conventional rigid joint assumption. In addition, between these story levels, a decline in the drift ratios is observed as the story level increased. However, from this limited study, there is no consistent evidence to suggest that care should be taken in selecting either a single or multi component joint model for seismic risk assessment of buildings when a global demand measure such as maximum inter-storey drift is employed in the seismic assessment framework.

Analytical Studies for Predicting Behaviors of RC Beams Retrofitted with Hybrid FRPs (하이브리드 FRP로 보강된 콘크리트 보의 거동 예측을 위한 해석연구)

  • Utui, Nadia;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • This study aims at predicting structural behaviors of RC (Reinforced Concrete) beams retrofitted with hybrid FRPs (Fiber Reinforced Polymers). Toward this goal, structural analysis for the RC beams retrofitted with hybrid FRPs are performed and validated using existing experimental data. For the analysis, failure models due to debonding of FRPs and concrete separation are implemented within FE (Finite Element) model, based on Smith and Teng, model, and Teng and Yao model, respectively. Nonlinear material and geometrical effects are also included in the analysis. The suggested modeling approaches are able to predict structural behaviors of RC beams retrofitted with hybrid FRPs similar to the experimental data, however, a numerical model needs to be developed in order to predict failure strength of RC beams retrofitted with hybrid FRPs accurately.

Shear strength model for reinforced concrete beam-column joints based on hybrid approach

  • Parate, Kanak N.;Kumar, Ratnesh
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.377-398
    • /
    • 2019
  • Behavior of RC beam-column joint is very complex as the composite material behaves differently in elastic and inelastic range. The approaches generally used for predicting joint shear strength are either based on theoretical, strut-and-tie or empirical methods. These approaches are incapable of predicting the accurate response of the joint for entire range of loading. In the present study a new generalized RC beam-column joint shear strength model based on hybrid approach i.e. combined strut-and-tie and empirical approach has been proposed. The contribution of governing parameters affecting the joint shear strength under compression has been derived from compressive strut approach whereas; the governing parameters active under tension has been extracted from empirical approach. The proposed model is applicable for various conditions such as, joints reinforced either with or without shear reinforcement, joints with wide beam or wide column, joints with transverse beams and slab, joints reinforced with X-bars, different anchorage of beam bar, and column subjected to various axial loading conditions. The joint shear strength prediction of the proposed model has been compared with 435 experimental results and with eleven popular models from literature. In comparison to other eleven models the prediction of the proposed model is found closest to the experimental results. Moreover, from statistical analysis of the results, the proposed model has the least coefficient of variation. The proposed model is simple in application and can be effectively used by designers.

Finite element parametric study of RC beams strengthened with carbon nanotubes modified composites

  • Irshidat, Mohammad R.;Alhusban, Rami S.
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.131-141
    • /
    • 2021
  • This paper aims at investigating the capability of different FRP/concrete interface models to predict the effect of carbon nanotubes on the flexural behavior of RC beams strengthened with CFRP. Three different interfacial bond models are proposed to simulate the adhesion between CFRP composites and concrete, namely: full bond, nonlinear spring element, and cohesive zone model. 3D Nonlinear finite element model is developed then validated using experimental work conducted by the authors in a previous investigation. Cohesive zone model (CZM) has the best agreement with the experimental results in terms of load-deflection response. CZM is the only bond model that accurately predicted the cracks patterns and failure mode of the strengthened RC beams. The FE model is then expanded to predict the effect of bond strength on the flexural capacity of RC beams strengthened with externally bonded CNTs modified CFRP composites using CZM bond model. The results reveal that the flexural capacity of the strengthened beams increases with increasing the bond strength value. However, only 23% and 22% of the CFRP stress and strain capacity; in the case of full bond; can be utilized before failure.

Study on dynamic flexural stiffness of CFST members through Bayesian model updating

  • Shang-Jun Chen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.697-712
    • /
    • 2024
  • In this paper, the dynamic flexural stiffness of concrete-filled steel tubular (CFST) members is investigated based on vibration modal testing and a Bayesian model updating procedure. To reflect the actual service states of CFST members, a 3-stage modal testing procedure is developed for 6 circular CFST beam-columns, in which the modal parameters of the specimens under varying axial load levels are extracted. In the model updating procedure, a Timoshenko beam element model is first established, in which the influence of shear deformation and rotational inertia are incorporated. Subsequently, a 2-round Bayesian model updating strategy is proposed to calculate the dynamic flexural stiffness of the specimens, which could effectively consider the influence of physical constraints in the updating process and achieve reasonably well results. Analysis of the updating results shows that with the increase of the axial load level, degradation of the flexural stiffness is significantly influenced by the load eccentricity. It shows that the cracking of the core concrete is the primary reason for the flexural stiffness degradation of CFST beam-columns. Finally, based on comparison with equations proposed by several design standards, the calculation methods for the dynamic flexural stiffness of CFST members is recommended.

Growth of Time-Dependent Strain in Reinforced Cement Concrete and Pre-stressed Concrete Flexural Members

  • Debbarma, Swarup Rn.;Saha, Showmen
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 2012
  • This paper presents the differences in growth of time-dependent strain values in reinforced cement concrete (RCC) and pre-stressed concrete (PSC) flexural members through experiment. It was observed that at any particular age, the time-dependent strain values were less in RCC beams than in PSC beams of identical size and grade of concrete. Variables considered in the study were percentage area of reinforcement, span of members for RCC beams and eccentricity of applied pre-stress force for PSC beams. In RCC beams the time-dependent strain values increases with reduction in percentage area of reinforcement and in PSC beams eccentricity directly influences the growth of time-dependent strain. With increase in age, a non-uniform strain develops across the depth of beams which influence the growth of concave curvature in RCC beams and convex curvature in PSC beams. The experimentally obtained strain values were compared with predicted strain values of similar size and grade of plane concrete (PC) beam using ACI 318 Model Code and found more than RCC beams but less than PSC beams.

Analysis of Slab Joint Opening Due to Temperature Drop in Continuous Precast Concrete Slab Track (연속 프리캐스트 콘크리트 슬래브궤도에서의 온도하강에 따른 슬래브 이음매 개구량 해석)

  • Jang, Seung-Yup;Lee, Jeong-Wan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1659-1663
    • /
    • 2011
  • Precast concrete slab track is a track structure to be installed by transporting and assembling precast concrete slabs manufactured at the factory. This method can improve concrete quality, provide easy maintenance and reduce construction time, compared with in-situ concrete track. However, the concrete slabs being continuously connected in longitudinal direction, due to the temperature change between summer and winter, the openings at slab joints have occurred. Thus, in this study, to identify the cause of this opening of slab joint, the joint opening caused by temperature drop in the longitudinally continuous precast concrete slab track has been predicted using three-dimensional finite element analysis, and compared with field measurements. Based on the proven model, the slab joint opening, and the stress pattern of concrete slab and steel reinforcement according to concrete slab-base friction properties, concrete-reinforcement bond properties, and prestressing were analyzed.

  • PDF

Study on the Amount of Critical Corrosion Products of Reinforcement inducing Concrete Cover Cracking with Finite Element Analysis (유한 요소법을 이용한 콘크리트 벽체 균열을 발생시키는 철근의 임계 부식량에 대한 연구)

  • 김광웅;장상엽;조용범;김용철;고영태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.361-366
    • /
    • 2002
  • The deterioration of concrete structure due to corrosion of the reinforcement has created big financial losses on the overall industries. The volume expansion of the corrosion products causes internal pressure to concrete wall around reinforcing bar. If the maximum principal stress induced by internal pressure exceeds the tensile strength of the concrete at any point of time, a crack forms at any point of material. Therefore, in terms of life assessment of concrete structure, it is very important to predict the amount of corrosion products which induces initial concrete cracking. With this objective, this paper proposes the critical amount of corrosion products at interface between reinforcement and concrete using finite element analysis. If an actual survey of corrosion rates could be made, the model might supply information for condition assessment of existing concrete structure. As the mechanical properties of corrosion product and instantaneous geometry of corroded steel are considered in the analysis, the value obtained will be more realistic.

  • PDF

Compressive behavior of reinforced concrete columns confined by multi-spiral hoops

  • Chen, Y.;Feng, J.;Yin, S.
    • Computers and Concrete
    • /
    • v.9 no.5
    • /
    • pp.341-355
    • /
    • 2012
  • Numerical studies are performed to predict the stress-strain behavior of rectangular RC columns confined by multi-spiral hoops under axial and eccentric compressions. Using the commercial finite element package ABAQUS, the Drucker-Prager criterion and the yield surface are adopted for damaged plasticity concrete. The proposed finite element models are compared with the published experimental data. Parametric studies on concrete grades, confinement arrangement, diameter and spacing of hoops and eccentricity of load are followed. Numerical results have shown good agreements with experimental values, and indicated a proper constitutive law and model for concrete. Cross-sectional areas and spacing of the hoops have significant effect on the bearing capacity. It can be concluded that rectangular RC columns confined by multi-spiral hoops show better performance than the conventional ones.

Load bearing capacity reduction of concrete structures due to reinforcement corrosion

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.455-464
    • /
    • 2020
  • Reinforcement corrosion is one of the major problems in the durability of reinforced concrete structures exposed to aggressive environments. Deterioration caused by reinforcement corrosion reduces the durability and the safety margin of concrete structures, causing excessive costs in managing these structures safely. This paper aims to investigate the effects of reinforcement corrosion on the load bearing capacity deterioration of the corroded reinforced concrete structures. A new analytical method is proposed to predict the crack growth of cover concrete and evaluate the residual strength of concrete structures with corroded reinforcement failing in bond. The structural performance indicators, such as concrete crack growth and flexural strength deterioration rate, are assumed to be a stochastic process for lifetime distribution modelling of structural performance deterioration over time during the life cycle. The Weibull life evolution model is employed for analysing lifetime reliability and estimating remaining useful life of the corroded concrete structures. The results for the worked example show that the proposed approach can provide a reliable method for lifetime performance assessment of the corroded reinforced concrete structures.