Journal of the Korea Academia-Industrial cooperation Society
/
v.11
no.12
/
pp.4991-4996
/
2010
Clustering method in wireless sensor network is the technique that forms the cluster to aggregate the data and transmit them at the same time that they can use the energy efficiently. Even though cluster group model is based on clustering, it differs from previous method that reducing the total energy consumption by separating energy overload to cluster group head and cluster head. In this thesis, I calculate the optimal cluster group number and cluster number in this kind of cluster group model according to threshold of energy consumption model. By using that I can minimize the total energy consumption in sensor network and maximize the network lifetime. I also show that proposed cluster group model is better than previous clustering method at the point of network energy efficiency.
In the present study, the neural network (NN) model with cluster analysis method was developed to predict storm surge in the whole Korean coastal regions with special focuses on the regional extension. The model used in this study is NN model for each cluster (CL-NN) with the cluster analysis. In order to find the optimal clustering of the stations, agglomerative method among hierarchical clustering methods was used. Various stations were clustered each other according to the centroid-linkage criterion and the cluster analysis should stop when the distances between merged groups exceed any criterion. Finally the CL-NN can be constructed for predicting storm surge in the cluster regions. To validate model results, predicted sea level value from CL-NN model was compared with that of conventional harmonic analysis (HA) and of the NN model in each region. The forecast values from NN and CL-NN models show more accuracy with observed data than that of HA. Especially the statistics analysis such as RMSE and correlation coefficient shows little differences between CL-NN and NN model results. These results show that cluster analysis and CL-NN model can be applied in the regional storm surge prediction and developed forecast system.
For a sensitive survey in which the population is comprised of several clusters with a quantitative attribute, we present an additive quantitative randomized response model by cluster sampling that adapts a two-stage cluster sampling instead of a simple random sample based on Himmelfarb-Edgell's additive quantitative attribute model and Gjestvang-Singh's one. We also derive optimum values for the number of 1st stage clusters and the optimum values of observation units in a 2nd stage cluster under the condition of minimizing the variance given constant cost. We can see that Himmelfarb-Edgell's model is more efficient than Gjestvang-Singh's model under the condition of cluster sampling.
Journal of the Economic Geographical Society of Korea
/
v.20
no.2
/
pp.189-213
/
2017
This study seeks to critically examine the significance and limits of the cluster adaptive cycle model for analysis of cluster evolution and to propose research issues for future analysis of cluster evolution based on this critical examination. Until the 1980s, research on industrial complexes including clusters was based on a 'static perspective' that focuses on the aspect of economic space at a specific point in time, but the research paradigm has recently shifted to a 'dynamic perspective' focusing on 'evolution' of 'complex adaptive systems'. As a result, the adaptive cycle model has attracted attention as an analysis tool of dynamically evolving clusters. However, the cluster adaptive cycle model has emerged by being appropriately modified and expanded according to the properties of the cluster and its evolution. The cluster adaptive cycle model is a comprehensive analysis framework that identifies the characteristics of cluster evolution in terms of resource accumulation, interdependence, and resilience and classifies cluster evolution paths into six different categories. Nevertheless, there is still a need for further discussion and supplementation in terms of theoretical and empirical research to expand and deepen the model. Therefore, research issues for future analysis of cluster evolution are to specify and elaborate the cluster evolution model, to emphasize the concept of resilience, and to verify the applicability and usefulness of the model through empirical research.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.2
/
pp.680-699
/
2015
The use of web service has been increased rapidly, with an increase in the number of available services, finding the exact service is the challenging task. Service discovery is the most significant job to complete the service discoverers needs. In order to achieve the efficient service discovery, we focus on designing a cluster based service discovery model for service registering and service provisioning among all mobile nodes in a mobile ad hoc network (MANETs). A dynamic backbone of nodes (i.e. cluster heads) that forms a service repository to which MANET nodes can publish their services and/or send their service queries. The designed model is based on storing services with their service description on cluster head nodes that are found in accordance with the proposed cluster head election model. In addition to identifying and analyzing the system parameters for finding the effectiveness of our model, this paper studies the stability analysis of the network, overhead of the cluster, and bandwidth utilization and network traffic is evaluated using analytic derivations and experimental evaluation has been done.
Journal of information and communication convergence engineering
/
v.22
no.1
/
pp.1-6
/
2024
Energy efficiency in wireless sensor networks (WSNs) is a critical issue because batteries are used for operation and communication. In terms of scalability, energy efficiency, data integration, and resilience, WSN-cluster-based routing algorithms often outperform routing algorithms without clustering. Low-energy adaptive clustering hierarchy (LEACH) is a cluster-based routing protocol with a high transmission efficiency to the base station. In this paper, we propose an energy consumption model for LEACH and compare it with the existing LEACH, advanced LEACH (ALEACH), and power-efficient gathering in sensor information systems (PEGASIS) algorithms in terms of network lifetime. The energy consumption model comprises energy-sensitive cluster formation and a cluster head selection technique. The setup and steady-state phases of the proposed model are discussed based on the cluster head selection. The simulation results demonstrated that a low-energy-consumption network was introduced, modeled, and validated for LEACH.
Journal of Information Technology Applications and Management
/
v.19
no.2
/
pp.117-134
/
2012
Cluster industries are geographically concentrated and inter-connected by the flow of goods and services, which is stronger than the flow linking them to the rest of the economy. Photonics industries are one of the fastest growing high-tech industries in the world today. Especially, the city of Gwangju(South Korea) industrial cluster, a specialized complex in photonics industry, produced remarkable results in developing high-quality technologies since it launched the cluster program in 2005. Gwangju photonics industrial cluster will be ranked top level of the world photonics industry. In this sense, this study is aimed at proposing a new research model in which corporate performance influence factors of photonics industrial cluster (i.e., business environment, cooperative relationship, and industry-university-research institute partnership) affect absorptive capacity positively, leading to corporate performance eventually. This study developed a research model to explain the Korean photonics industrial cluster effects, and collected 91 survey responses from photonics based company managers in industrial cluster complex. To prove the validity of the proposed research model, PLS analysis is applied with valid 91 questionnaires. By employing PLS technique, the measurement reliability and validity of research variables are tested and the path analysis is conducted to do the hypothesis testing. In brief, the finding of this study suggests that corporate performance influence factors of photonics industrial cluster affect absorptive capacity positively, and corporate performance as well.
Second language learners' variable degree of production difficulty according to the cluster type has previously been accounted for in terms of sonority distance between adjacent segments. As an alternative to this previous model, I propose a Phonetically Based Consonant Cluster Acquisition Model (PCCAM) in which consonant cluster markedness is defined based on the articulatory and perceptual factors associated with each consonant sequence. The validity of PCCAM has been tested through Korean speakers' production of English consonant clusters.
The purpose of this study was to measure the factor influencing tourist preferences for leaf mustard iimchi. Among 250 questionnaires, 230 questionnaires were utilized for the analysis. Frequencies, conjoint model, max. utility model, BTL model, Logit model, K-means cluster analysis, and one-way ANOVA analysis were used for this study. The findings from this study were as follows. First, the Pearson's R and Kendall's tau statistics showed that the model fitted the data well. Second, it was found that total respondents and three clusters regarded taste and price as the very important factor. Third, it was found that the first cluster most preferred product with light red color, plain package, and mild taste sold at a cheap price in factory. The second cluster most preferred product with light red color, plain package, and moderately pungent taste sold at a expensive price in factory. The third cluster most preferred product with dark red color, shaped package, and highly pungent taste sold at a cheap price in factory. Fourth, it was found that the first cluster most preferred simulation product with light red color, shaped package, and mild taste sold at a cheap price in factory. The second cluster most preferred simulation product with light red color, shaped package, and moderately pungent taste sold at a cheap price in factory. The third clutter most preferred simulation product with dark red color, shaped package, and highly pungent taste sold at a cheap price in factory.
The purpose of this study is to find out the air flow patterns affecting the PM10 concentration in Busan and the potential sources within each trajectory pattern. The synoptic air flow trajectories are classified into four clusters by HYSPLIT model and the potential sources of PM10 are estimated by PSCF model for each cluster from 2008 to 2012. The potential source locations of PM10 are compared with the distribution of PM10 anthropogenic emissions in east Asia developed in 2006 for the NASA INTEX-B mission. The annual mean concentrations of PM10 in Busan decreased from $51ug/m^3$ in 2008 to $43ug/m^3$ in 2012. The monthly mean concentrations of PM10 were high during a spring season, March to May and low during a summer season, August and September. The cluster2 composed of the air trajectories from the eastern China to Busan through the west sea showed the highest frequency, 44 %. The cluster1 composed of the air trajectories from the inner Mongolia region to Busan through the northeast area of China showed the second high frequency, 26 %. The cluster3 and 4 were composed of the trajectories originated in the southeast sea and the east sea of Busan respectively and showed low frequencies. The concentrations of in each cluster were $47ug/m^3$ in cluster1, $56ug/m^3$ in cluster2, $42ug/m^3$ in cluster3 and $37ug/m^3$ in cluster4. From these results, it was proved that the cluster1 and 2 composed of the trajectories originated in the east and northeast area of China were the causes of high PM10 concentrations in Busan. The results of PSCF and CWT model showed that the potential sources of the high PM10 concentrations were the areas of the around Mongolia and the eastern China having high emissions of PM10 from Beijing, Hebei to Shanghai through Shandong, Jiangsu.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.