• 제목/요약/키워드: model adaptation

검색결과 1,101건 처리시간 0.027초

차원별 Eigenvoice와 화자적응 모드 선택에 기반한 고속화자적응 성능 향상 (Performance Improvement of Fast Speaker Adaptation Based on Dimensional Eigenvoice and Adaptation Mode Selection)

  • 송화전;이윤근;김형순
    • 한국음향학회지
    • /
    • 제22권1호
    • /
    • pp.48-53
    • /
    • 2003
  • Eigenvoice 방법은 고속화자적응에 적합하다고 알려져 있지만, 이 방법은 발화수가 증가하더라도 추가적인 인식성능향상이 이루어지지 않는 단점이 있다. 본 논문에서는 이 문제를 해결하기 위해 음성 특징벡터의 차원별로 eigenvoice의 가중치를 구하여 적응시키는 방법과 또한 적응 데이터 수에 따라 높은 인식률을 얻는 적응 방식을 선택하는 방식을 제안한다. 화자독립모델 및 eigenvoice들을 구성하기 위해 POW (Phonetically Optimized Words)데이터베이스를 사용하였으며, PBW(Phonetically Balanced Words) 452단어 중50개까지 발화 수를 변화시키면서 교사방식 (Supervised mode)로 적응에 사용하고 나머지 중 400개를 인식실험에 사용하였다. 차원별 eigenvoice 방법이 발화수가 증가함에 따라 기존의 eigenvoice 나 MLLR 방법보다 높은 성능을 보였으며, eigenvoice와 차원별 eigenvoice방법 사이의 적응 모드 선택을 통해 기존의 eigenvoice 방식에 비해 최고 26%의 단어 오인식률 감소를 얻었다.

다양한 잡음 환경하에서 환경 군집화를 통한 화자 및 환경 동시 적응 (Simultaneous Speaker and Environment Adaptation by Environment Clustering in Various Noise Environments)

  • 김영국;송화전;김형순
    • 한국음향학회지
    • /
    • 제28권6호
    • /
    • pp.566-571
    • /
    • 2009
  • 본 논문에서는 eigenvoice 방식에 기반하여 다양한 잡음 환경에 강인한 고속 화자 적응 방법을 제안하였다. 제안된 방법은 잡음 제거 기술과 환경 군집화 방법을 기반으로 한다. 그러나, 잡음 제거 기술을 통해 잡음을 제거한 후에도 여전히 잔여 잡음이 존재하므로 비음성 구간의 켑스트럼 평균을 사용하여 잡음 환경별로 화자 적응 데이터를 분류한 후 각각의 환경별로 환경 모델을 구성한다. 이러한 환경 군집화를 적응데이터에 대해 구성한 후 테스트 음성이 입력되면 군집화된 모델 중에서 인식 데이터와 가장 유사한 복수의 환경별 군집화된 화자 적응 모델을 구한 후 이들의 가중함을 통해 화자 적응을 수행하는 방법이다. 제안된 방법은 적응 및 평가를 통해 화자 독립 모델을 사용한 경우에 비해 $40{\sim}59%$ 인식 오류 감소율을 얻었다.

An explanatory model of quality of life in high-risk pregnant women in Korea: a structural equation model

  • Mihyeon Park;Sukhee Ahn
    • 여성건강간호학회지
    • /
    • 제29권4호
    • /
    • pp.302-316
    • /
    • 2023
  • Purpose: This study aimed to develop and validate a structural model for the quality of life (QoL) among high-risk pregnant women, based on Roy's adaptation model. Methods: This cross-sectional study collected data from 333 first-time mothers diagnosed with a high-risk pregnancy in two obstetrics and gynecology clinics in Cheonan, Korea, or participating in an online community, between October 20, 2021 and February 20, 2022. Structured questionnaires measured QoL, contextual stimuli (uncertainty), coping (adaptive or maladaptive), and adaptation mode (fatigue, state anxiety, antenatal depression, maternal identity, and marital adjustment). Results: The mean age of the respondents was 35.29±3.72 years, ranging from 26 to 45 years. The most common high-risk pregnancy diagnosis was gestational diabetes (26.1%). followed by preterm labor (21.6%). QoL was higher than average (18.63±3.80). Above-moderate mean scores were obtained for all domains (psychological/baby, 19.03; socioeconomic, 19.00; relational/spouse-partner, 20.99; relational/family-friends, 19.18; and health and functioning, 16.18). The final model explained 51% of variance in QoL in high-risk pregnant women, with acceptable overall model fit. Adaptation mode (β=-.81, p=.034) and maladaptive coping (β=.46 p=.043) directly affected QoL, and uncertainty (β=-. 21, p=.004), adaptive coping (β=.36 p=.026), and maladaptive coping (β=-.56 p=.023) indirectly affected QoL. Conclusion: It is essential to develop nursing interventions aimed at enhancing appropriate coping strategies to improve QoL in high-risk pregnant women. By reinforcing adaptive coping strategies and mitigating maladaptive coping, these interventions can contribute to better maternal and fetal outcomes and improve the overall well-being of high-risk pregnant women.

다 모델 방식과 모델보상을 통한 잡음환경 음성인식 (A Multi-Model Based Noisy Speech Recognition Using the Model Compensation Method)

  • 정용주;곽성우
    • 대한음성학회지:말소리
    • /
    • 제62호
    • /
    • pp.97-112
    • /
    • 2007
  • The speech recognizer in general operates in noisy acoustical environments. Many research works have been done to cope with the acoustical variations. Among them, the multiple-HMM model approach seems to be quite effective compared with the conventional methods. In this paper, we consider a multiple-model approach combined with the model compensation method and investigate the necessary number of the HMM model sets through noisy speech recognition experiments. By using the data-driven Jacobian adaptation for the model compensation, the multiple-model approach with only a few model sets for each noise type could achieve comparable results with the re-training method.

  • PDF

내부기생충의 진화과정을 모방한 인공적응 모형 (An Artificial Adaptation Model by Means of the Endoparasitic Evolution Process)

  • 김여근;이효영;김재윤
    • 대한산업공학회지
    • /
    • 제27권3호
    • /
    • pp.239-249
    • /
    • 2001
  • Competitive coevolution models, often called host-parasite models, are searching models that imitate the biological coevolution that is a series of reciprocal changes in two competing species. The models are known to be an effective method of solving complex and dynamic problems such as game problems, neural network design problems and constraint satisfaction problems. However, previous models consider only ectoparasites that live on the outside of the host when designing the models, not considering endoparasites that live on the inside of the host. This has a limitation to exploiting some information. In this paper, we develop an artificial adaptation model simulating the process in which hosts coevolve with both ectoparasites and endoparasites. In the model, the endoparasites play important roles as follows. By means of them, we can keep the history on results of previous competition between hosts and parasites, and use endogeneous fitness, not exogeneous. Extensive experiments are carried out to show the coevolution phenomenon and to verify the performance of the proposed model. Nim game problems and neural network problems are used as test-bed problems. The results are reported in this paper.

  • PDF

작물 수확 자동화를 위한 시각 언어 모델 기반의 환경적응형 과수 검출 기술 (Domain Adaptive Fruit Detection Method based on a Vision-Language Model for Harvest Automation)

  • 남창우;송지민;진용식;이상준
    • 대한임베디드공학회논문지
    • /
    • 제19권2호
    • /
    • pp.73-81
    • /
    • 2024
  • Recently, mobile manipulators have been utilized in agriculture industry for weed removal and harvest automation. This paper proposes a domain adaptive fruit detection method for harvest automation, by utilizing OWL-ViT model which is an open-vocabulary object detection model. The vision-language model can detect objects based on text prompt, and therefore, it can be extended to detect objects of undefined categories. In the development of deep learning models for real-world problems, constructing a large-scale labeled dataset is a time-consuming task and heavily relies on human effort. To reduce the labor-intensive workload, we utilized a large-scale public dataset as a source domain data and employed a domain adaptation method. Adversarial learning was conducted between a domain discriminator and feature extractor to reduce the gap between the distribution of feature vectors from the source domain and our target domain data. We collected a target domain dataset in a real-like environment and conducted experiments to demonstrate the effectiveness of the proposed method. In experiments, the domain adaptation method improved the AP50 metric from 38.88% to 78.59% for detecting objects within the range of 2m, and we achieved 81.7% of manipulation success rate.

잡음 환경하에서 환경 군집화를 이용한 고속화자 적응 (Fast Speaker Adaptation in Noisy Environment using Environment Clustering)

  • 김영국;송화전;김형순
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2007년도 한국음성과학회 공동학술대회 발표논문집
    • /
    • pp.33-36
    • /
    • 2007
  • In this paper, we investigate a fast speaker adaptation method based on eigenvoice in several noisy environments. In order to overcome its weakness against noise, we propose a noisy environment clustering method which divides the noisy adaptation utterances into utterance groups with similar environments by the vector quantization based clustering using a cepstral mean as a feature vector. Then each utterance group is used for adaptation to make an environment dependent model. According to our experiment, we obtained 19-37 % relative improvement in error rate compared with the simultaneous speaker adaptation and environmental compensation method

  • PDF

화자적응 신경망을 이용한 고립단어 인식 (Isolated Word Recognition Using a Speaker-Adaptive Neural Network)

  • 이기희;임인칠
    • 전자공학회논문지B
    • /
    • 제32B권5호
    • /
    • pp.765-776
    • /
    • 1995
  • This paper describes a speaker adaptation method to improve the recognition performance of MLP(multiLayer Perceptron) based HMM(Hidden Markov Model) speech recognizer. In this method, we use lst-order linear transformation network to fit data of a new speaker to the MLP. Transformation parameters are adjusted by back-propagating classification error to the transformation network while leaving the MLP classifier fixed. The recognition system is based on semicontinuous HMM's which use the MLP as a fuzzy vector quantizer. The experimental results show that rapid speaker adaptation resulting in high recognition performance can be accomplished by this method. Namely, for supervised adaptation, the error rate is signifecantly reduced from 9.2% for the baseline system to 5.6% after speaker adaptation. And for unsupervised adaptation, the error rate is reduced to 5.1%, without any information from new speakers.

  • PDF

가중 훈련을 이용한 화자 적응 시스템의 향상 (Improvements in Speaker Adaptation Using Weighted Training)

  • 장규철;우수영;진민호;박용규;유창동
    • 한국음향학회지
    • /
    • 제22권3호
    • /
    • pp.188-193
    • /
    • 2003
  • 이전의 여러 가지 화자 적응을 위한 모델 적응 방법은 훈련 환경과 테스트 환경의 불일치를 보상하기 위한 방법으로 적응데이터의 테스트 환경에서의 분포를 고려하지 않은 보상 방법이었다. 적은 적응 데이터에 대해서 보상을 극대화하기 위한 파라미터 변환 방법들은 고르지 못한 적응 데이터에 의해 시스템의 성능이 저하 될 가능성이 있다 즉, 데이터가 적을 경우에는 적응 데이터의 분포가 적응 결과에 중대한 영향을 미치게 된다. 적은 데이터에 대해서도 높은 인식률 향상을 가져오기 위한 supervised 훈련과정을 구조적 사후확률 최대화(SMAP: Structural Maximum a Posterior) 알고리듬에 적용하였다. 제안된 가중치 SMAP (Weighted SMAP) 알고리듬과 SMAP알고리듬을 TIDIGITS 코퍼스를 사용해서 비교해 보았다. 제안된 WSMAP은 적은 양의 데이터에 대해서 SMAP보다 좋은 성능을 나타내었다. 환경 적응에 적응 데이터의 분포를 고려하는 이와 같은 방법은 다른 적응 알고리듬에도 적용될 수 있다.

에너지절감을 도모하는 실내 온열환경 제어논리-Adaptive Model (New approaches of Indoor Environmental Control for Energy Saving-Adaptive Model)

  • 송두삼;가토 신스케
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.838-846
    • /
    • 2006
  • The purpose of this study to develop the air-conditioning system that adopts adaptive model as an indoor climate control logic for energy saving. The adaptive model using the ability of human thermal adaptation could be expected to alleviate the indoor set-point temperature compared with the past heat-balance model. Especially, in case of hybrid air-conditioning system coupled with natural ventilation and heating/cooling system, the adaptive model can be describe the thermal comfort of inhabitant who stay at hybrid system controlled buildings with accuracy. In this paper, the concept of adaptive model will be described and the results of a continuous measurement on the actual thermal experiences and behaviors of thermal adaptation for office worker will be reported.

  • PDF