• Title/Summary/Keyword: mode shape sensitivity

Search Result 69, Processing Time 0.022 seconds

Optimum Design of a Center-pillar Model with a Simplified Side Impact Analysis (단순 측면충돌해석에 의한 센터필러의 최적설계)

  • Bae GiHyun;Song JungHan;Huh Hoon;Kim SeHo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.84-92
    • /
    • 2005
  • This paper is concerned with optimum design of a center-pillar assembly induced by the high-speed side impact of the vehicle. In order to simulate deformation behavior of the center-pillar assembly, simplified finite element model of the center-pillar and a moving deformable barrier are developed based on results of the crash analysis of a full vehicle model. In optimization of the deformation shape of the center-pillar, S-shaped deformation is targeted to guarantee reduction of the injury level of a driver dummy in the crash test. Tailor-welded blanks are adopted in the simplified center-pillar model to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. The thickness of parts which have significant effect on the deformation mechanism are selected as design parameters with sensitivity analysis based on the design of experiment technique. The objective function is constructed so as to minimize the weight and lead to an S-mode deformation shape. The result shows that the simplified model can be utilized effectively for optimum design of the center-pillar members with remarkable saving of computing time.

DDM Rotordynamic Design Sensitivity Analysis of an APU Turbogenerator Having a Spline Shaft Connection

  • Lee, An-Sung;Ha, Jin-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • An eigenvalue design sensitivity formulation of a general nonsymmetric-matrix rotor-bearing system is devised. using the DDM (direct differential method). Then, investigations on the design sensitivities of critical speeds are carried out for an APU turbogenerator with a spline shaft connection. Results show that the dependence of the rate of change of the critical speed on the stiffness changes of bearing models of spline shaft connection points is negligible, and thereby their modeling uncertainty does not present any problem. And the passing critical speeds up to the 4th critical speed are not sensitive to the design stiffness coefficients of four main bearings. Further, the dependence of the rate of change of the critical speed on the shaft-element length changes shows quantitatively that the spline shaft has some limited influence on the 4th critical speed but no influence on the 1st to 3rd critical speeds. With no adverse effect from the spline shaft, the APU system achieves a critical speed separation margin of more than 40% at a rated speed of 60,000 rpm.

A study on configuration of acoustic package for towed array sonar using design of experiments (실험계획법을 이용한 예인 음탐기용 음향패키지 형상 연구)

  • Lee, JungHyun;Shin, Jeungho;Kwon, Oh-Cho;Kim, Gunchil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.200-206
    • /
    • 2019
  • In this paper, the characteristics of receiving voltage sensitivity about acoustic package in towed array sonar is analyzed through the numerical simulation and design of experiments. Simulation results show that the variation of receiving voltage sensitivity is caused by the structural resonance mode shape on baseline acoustic package. The effect of design parameters of the acoustic package are analyzed through the design of experiments to reduce the deviation of receiving voltage sensitivity. A change of hydrophone shield can thickness (t) is the greatest effect on the deviation of receiving voltage sensitivity. As a result of water tank test, the acoustic package derived from the design of experiments has reduced deviation of receiving voltage sensitivity.

Damage Detection of Shear Building Structures Using Dynamic Response (동적응답신호를 이용한 전단형 건물의 손상추정)

  • Yoo, Suk-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. The dynamic response of building structures has many noise and affected by nonstructural members and, above all, the behavior of building structure is more complex than civil structure and this makes the damage detection difficult. In recent researches the damage is detected by the indirect index such as sensitivity or assumed values. However, for the more reasonable damage detection, it needs to use the damage index directly induced from dynamic equation. The purpose of this study is to provide the damage detection method on shear building structures by the damage index directly induced from dynamic equation. The provided damage index could be estimated from measured mode shape of undamaged structure and frequency difference between undamaged and damaged structure. The damage detection method is applied to numerical analysis model such as MATLAB and MIDAS GENw for the verification. The damage index at damaged story represents (-) sign and 15 times than other undamaged sories.

A Study on the Effect of Fracture Delay of Intelligent FRP by Transparent Photoelastic Experimental Method (투과형 광탄성 실험법에 의한 지능성 FRP의 파괴지연 효과에 관한 연구)

  • Lee, Hyo-Jae;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1904-1911
    • /
    • 1999
  • The most effective material in the shape memory alloy(SMA) is the TiNi alloy, because its shape recovery characteristics are very excellent. We molded the composite material with shape memory function. The fiber of it is $Ti_{50}-Ni_{50}$ shape memory alloy and matrix of it is epoxy resin(Araldite B41, Hardner HT903. Ciba Geigy), its adhesive and optical sensitivity are very excellent. It was assured that the composite material could be used as model material of photoelastic experiment for intelligent materials or structures. In this research, the composite material with shape memory function is used as model material of photoelastic experiment. Photoelastic experimental hybrid method is developed in this research, it is assured that it is useful on the obtaining stress intensity factor and the separation of stress components from only isochromatic data. The measuring method of stress intensity factor of intelligent material by photoelastic experiment is introduced. In the mode I state, we can know that stress intensity factors are decreased more than 50% of stress intensity factor of room temperature when temperature of fiber is greater than 4$0^{\circ}C$, prestrain greater than 5% and fiber volume ratio greater than 0.42% and that stress intensity factors are decreased by 100% when fiber volume ratio is greater than 0.84%, prestrain greater than 5% and temperature greater than 60 $^{\circ}C$.

Multi-strategy structural damage detection based on included angle of vectors and sparse regularization

  • Liu, Huanlin;Yu, Ling;Luo, Ziwei;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.415-424
    • /
    • 2020
  • Recently, many structural damage detection (SDD) methods have been proposed to monitor the safety of structures. As an important modal parameter, mode shape has been widely used in SDD, and the difference of vectors was adopted based on sensitivity analysis and mode shapes in the existing studies. However, amplitudes of mode shapes in different measured points are relative values. Therefore, the difference of mode shapes will be influenced by their amplitudes, and the SDD results may be inaccurate. Focus on this deficiency, a multi-strategy SDD method is proposed based on the included angle of vectors and sparse regularization in this study. Firstly, inspired by modal assurance criterion (MAC), a relationship between mode shapes and changes in damage coefficients is established based on the included angle of vectors. Then, frequencies are introduced for multi-strategy SDD by a weighted coefficient. Meanwhile, sparse regularization is applied to improve the ill-posedness of the SDD problem. As a result, a novel convex optimization problem is proposed for effective SDD. To evaluate the effectiveness of the proposed method, numerical simulations in a planar truss and experimental studies in a six-story aluminum alloy frame in laboratory are conducted. The identified results indicate that the proposed method can effectively reduce the influence of noises, and it has good ability in locating structural damages and quantifying damage degrees.

Application of meta-model based parameter identification of a seismically retrofitted reinforced concrete building

  • Yu, Eunjong
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.441-449
    • /
    • 2018
  • FE models for complex or large-scaled structures that need detailed modeling of structural components are usually constructed using commercial analysis softwares. Updating of such FE model by conventional sensitivity-based methods is difficult since repeated computation for perturbed parameters and manual calculations are needed to obtain sensitivity matrix in each iteration. In this study, an FE model updating procedure avoiding such difficulties by using response surface (RS) method and a Pareto-based multiobjective optimization (MOO) was formulated and applied to FE models constructed with a commercial analysis package. The test building is a low-rise reinforced concrete building that has been seismically retrofitted. Dynamic properties of the building were extracted from vibration tests performed before and after the seismic retrofits, respectively. The elastic modulus of concrete and masonry, and spring constants for the expansion joint were updated. Two RS functions representing the errors in the natural frequencies and mode shape, respectively, were obtained and used as the objective functions for MOO. Among the Pareto solutions, the best compromise solution was determined using the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) procedure. A similar task was performed for retrofitted building by taking the updating parameters as the stiffness of modified or added members. Obtained parameters of the existing building were reasonably comparable with the current code provisions. However, the stiffness of added concrete shear walls and steel section jacketed members were considerably lower than expectation. Such low values are seemingly because the bond between new and existing concrete was not as good as the monolithically casted members, even though they were connected by the anchoring bars.

Analysis of the Dynamical Characteristics and Prediction of Stiffness for the Joint between Members (부재간 결합부의 동적 특성 분석 및 강성 예측)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.58-64
    • /
    • 2019
  • This paper describes the analysis of dynamic characteristics and prediction of the stiffness for the joint between structural members. In the process of deriving the governing equations, the stiffness values responsible for the moment and shear force were modelled by using linear and torsional springs in the middle of a clamped-clamped beam. The sensitivities of the natural frequency and modal assurance criterion were investigated as a function of the dimensionless linear and torsional spring stiffness. The reliability of the predictions for the linear and torsional stiffness values was verified by the inverse computations of the stiffness matrix. The predictive and exact theoretical stiffness values were compared for the stiffness element in the finite element formulation, and their results show an excellent correlation. It is strongly anticipated that although the proposed methodology is currently limited to the analytical utilization, it will provide a useful tool to estimate unknown joint stiffness values based on the experimental natural frequency and mode shape.

Focused Electrospray Deposition for Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

  • Jeong, Kyung-Hwan;Seo, Jong-Cheol;Yoon, Hye-Joo;Shin, Seung-Koo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2293-2298
    • /
    • 2010
  • Focused electrospray (FES) deposition method is presented for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. FES ion optics consists of two cylindrical focusing electrodes capped with a truncated conical electrode through which an electrospray emitter passes along the cylindrical axis. A spray of charged droplets is focused onto a sample well on a MALDI target plate under atmospheric pressure. The shape and size distributions of matrix crystals are visualized by scanning electron microscope and the mass spectra are obtained by time-of-flight mass spectrometry. Angiotensin II, bradykinin, and substance P are used as test samples, while $\alpha$-cyano-4-hydroxycinnamic acid and dihydroxybenzoic acid are employed as matrices. FES of a sample/matrix mixture produces fine crystal grains on a 1-3 mm spot and reproducibly yields the mass spectra with little shot-to-shot and spot-to-spot variations. Although FES greatly stabilizes the signals, the space charge due to matrix ions limits the detection sensitivity of peptides. To avoid the space charge problem, we adopted a dual FES/FES mode, which separately deposits matrix and sample by FES in sequence. The dual FES/FES mode reaches the detection sensitivity of 0.88 amol, enabling ultrasensitive of peptides by homogeneously depositing matrix and sample under atmospheric pressure.

A Study on the Structure for the Improvement of Vibration Characteristics of a Vehicle Seatbelt (자동차 시트벨트의 진동특성 개선을 위한 구조에 관한 연구)

  • Kim, Chang-Hee;Oh, Chea-Eun;Kim, Tea-Woo;Song, Chul-Woo;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.97-102
    • /
    • 2020
  • To prevent vibration of a vehicle's interior parts due to external impacts, the vehicle should be designed to reduce vibration and increase rigidity. In this paper, we conducted a vehicle test in which the vibration characteristics of a seatbelt resulting from the impact of a person closing a car door were measured and analyzed. A correlation analysis was performed using the finite analysis method. Based on this, a sensitivity analysis was performed, and an improved model was designed. We compared the natural frequencies and mode shapes of the improved and the initial models, which confirmed that the natural frequency of the improved model was more than 10 Hz higher than that of the initial model. Moreover, the response frequency of the improved model was three times higher than the input frequency applied in the vehicle test.