• 제목/요약/키워드: mode shape ratio

검색결과 216건 처리시간 0.022초

자동차 차체용 TRIP강판의 저항 점용접부 Partial Interfacial Fracture 특성에 관한 연구 (Characterization of Partial Interfacial Fracture on Resistance Spot-Welded TRIP Steels for Automotive Applications)

  • 최철영;김인배;김양도;박영도
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.136-145
    • /
    • 2012
  • Resistance spot welding of TRIP780 steels was investigated to enhance understanding of weld fracture mode after tensile shear testing (TST) and L-shape tensile testing (LTT). The main failure mode for spot welds of TRIP780 steels was partial interfacial fracture (PIF). Although PIF does not satisfy the minimum button diameter (4${\surd}$t) for acceptable welds, it shows enough load carrying capacity of resistance spot welds for advanced high strength steels. In the analysis of displacement controlled L-shape tensile test results, cracks initiated at the notch of the faying surface and propagated through the interface of weldments, and finally, cracks change path into the sheet thickness direction. Use of the ductility ratio and CE analysis suggested that the occurrence of PIF is closely related to high hardness and brittle welds, which are caused by fast cooling rates and high chemical compositions of TRIP steels. Analysis of the hold time and weld time in a welding schedule demonstrated that careful control of the cooling rate and the size of a weld nugget and the HAZ zone can reduce the occurrence of PIF, which leads to sound welds with button fractures (BFs).

Buckling failure of cylindrical ring structures subjected to coupled hydrostatic and hydrodynamic pressures

  • Ping, Liu;Feng, Yang Xin;Ngamkhanong, Chayut
    • Structural Monitoring and Maintenance
    • /
    • 제8권4호
    • /
    • pp.345-360
    • /
    • 2021
  • This paper presents an analytical approach to calculate the buckling load of the cylindrical ring structures subjected to both hydrostatic and hydrodynamic pressures. Based on the conservative law of energy and Timoshenko beam theory, a theoretical formula, which can be used to evaluate the critical pressure of buckling, is first derived for the simplified cylindrical ring structures. It is assumed that the hydrodynamic pressure can be treated as an equivalent hydrostatic pressure as a cosine function along the perimeter while the thickness ratio is limited to 0.2. Note that this paper limits the deformed shape of the cylindrical ring structures to an elliptical shape. The proposed analytical solutions are then compared with the numerical simulations. The critical pressure is evaluated in this study considering two possible failure modes: ultimate failure and buckling failure. The results show that the proposed analytical solutions can correctly predict the critical pressure for both failure modes. However, it is not recommended to be used when the hydrostatic pressure is low or medium (less than 80% of the critical pressure) as the analytical solutions underestimate the critical pressure especially when the ultimate failure mode occurs. This implies that the proposed solutions can still be used properly when the subsea vehicles are located in the deep parts of the ocean where the hydrostatic pressure is high. The finding will further help improve the geometric design of subsea vehicles against both hydrostatic and hydrodynamic pressures to enhance its strength and stability when it moves underwater. It will also help to control the speed of the subsea vehicles especially they move close to the sea bottom to prevent a catastrophic failure.

편경의 진동모드 분석 (Vibrational Modes of Pyeongeong)

  • 유준희
    • 한국음향학회지
    • /
    • 제25권3호
    • /
    • pp.121-128
    • /
    • 2006
  • 편경은 기역자형 경석 16개로 이루어진 국악기로 1과 1/3 옥타브의 음역을 가지며, 아악에서 표준 악기의 역할을 한다. 편경의 진동모드를 분석하기 위하여 현재 국립국악원에서 연주에 사용되고 있는 편경과 세종대왕기념관에서 소장 중인 편경 유물의 음향 스펙트럼을 분석하였다. 또한 황종과 청협종에 해당하는 경석의 진동모드형태를 가속도계, TV 홀로그램 및 충격망치를 이용하여 분석하였다. 국립국악원 편경의 16개 경석에서 나타난 기명진동수는 경의 두께에 따라 증가하며, 삼분손익법에 따른 음률에 충실하게 조율되었다고 할 수 있다. 세종대왕기념관 편경의 16개 경석에 적혀있는 제작연도를 나타내는 간지는 서로 다르며, 12율려에 맞게 조율되었다고 하기 어렵다. 세종대왕기념관에 소장된 편경의 진동수는 국립국악원 편경과 최소가지차이 (just noticeable difference) 이상의 차이를 나타냈다. 진동모드형태는 경석의 두께와 무관하게 일정하다.

Experimental study on the behavior of CFT stub columns filled with PCC subject to concentric compressive loads

  • Kang, Hyun-Sik;Lim, Seo-Hyung;Moon, Tae-Sup;Stiemer, S.F.
    • Steel and Composite Structures
    • /
    • 제5권1호
    • /
    • pp.17-34
    • /
    • 2005
  • This paper presents an experimental study and its findings of the behavior of circular and square stub columns filled with high strength concrete ($f_c^{\prime}$=49MPa) and polymer cement concrete (PCC) under concentric compressive load. Twenty-four specimens were tested to investigate the effects of variations in the tube shape (circular, square), wall thickness, and concrete type on the axial strength of stub columns. The characteristics of CFT stub columns filled with two types of concrete were investigated in order to collect the basic design data for using the PCC for the CFT columns. The experimental investigations included consideration of the effects of the concrete fill on the failure mode, ultimate strength, initial stiffness and deformation capacity. One of the key findings of this study was that circular section members filled with PCC retain their structural resistance without reduction far beyond the ultimate capacity. The results presented in this paper will provide experimental data to aid in the development of design procedures for the use of advanced concretes in CFT columns. Additionally, these results give structural designers invaluable insight into the realistic behavior of CFT columns.

효과적 공간활용을 위한 Side Stream Plug-Flow Reactor를 이용한 하수 고도처리 공정 적용에 관한 연구 (A study on Applicable to Advanced treatment of using Side Stream Plug-Flow Reactor)

  • 김삼주;현인환;독고석
    • 상하수도학회지
    • /
    • 제22권3호
    • /
    • pp.367-372
    • /
    • 2008
  • This study configured the conventional $A^2O$ (Anaerobic-Anoxic-Aerobic bioreactor) system which the fixed media immersed into the anoxic reactor(Named PFR system : Plug Flow Reactor) for evaluating the removal efficiency of nitrogen in the wastewater. The experimental equipment was a cylinder which was consist of 4 pleated PE Pipes(Length 330M, Diameter 100mm) including 2 rope shape media. As a result, the average effluent T-N removal efficiency of the conventional $A^2O$ system was 17.9, 40.3, 50.6, 44.6% in each mode, but the average effluent T-N removal efficiency of the PFR system could achieve 38.8, 57.1, 71.8, 65.4% in each mode. It indicated that the PFR system caused to the increasing of C/N ratio that effected to the increasing of the denitrification efficiency. Not only the effective T-N removal efficiency but also the controllable install space will give advantages for retrofitting of the wastewater treatment plant with the conventional treatment system to the PFR system.

상압소결에 의하여 제조된 SiC-AlN 복합체에서의 고용체 형성과 미세구조 (Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN Composite)

  • 이종국;김덕준;김환
    • 한국세라믹학회지
    • /
    • 제33권7호
    • /
    • pp.785-792
    • /
    • 1996
  • Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN compo-site using oxides as a sintering aid at 185$0^{\circ}C$ and 195$0^{\circ}C$ Regardless of SiC/AlN ratio in composition most of sintered specimens showed he complex structure mixed with 2H solid solution and SiC particles. High sintering temperature and large AlN content in starting composition enhanced the formation of 2H solid solution in sintered specimen 2H solid solution showed the spherical shape and core-rim structure. AlN content in the core is higher than that in the rim but SiC content . The size of 2H solid solution on fracture showed the transgranular fracture mode compared with the dispersed SiC particles which showed the intergranular fracture mode.

  • PDF

비정형 구조물의 평면 회전축과 코어의 이동에 따른 지진응답분석 (Analysis of Seismic Response by the Movement of the Plane Rotation Axis and the Core of Atypical Structures)

  • 이다혜;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.33-40
    • /
    • 2022
  • When the center of stiffness and the center of mass of the structure differ under the seismic load, torsion is caused by eccentricity. In this study, an analysis model was modeled in which the positions of the core and the plane rotation axis of a 60-story torsional atypical structure with a plane rotation angle of 1 degree per floor were different. The structural behavior of the analysis model was analyzed, and the earthquake response behavior of the structure was analyzed based on the time history analysis results. As a result, as the eccentricity of the structure increased, the eccentricity response was amplified in the high-rise part, and the bending and torsional behavior responses were complex in the low-order vibration mode. As a result of the analysis, the maximum displacement and story drift ratio increased due to the torsional behavior. The maximum story shear force and the story absolute maximum acceleration showed similarities for each analysis model according to the shape of the vibration mode of the analysis model.

Behavior of reinforced sustainable concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Shallal, Mustafa S.
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.271-284
    • /
    • 2021
  • This study aims to trace the response of twelve one-way sustainable concrete hollow-core slabs made by reducing cement content and using replacement of coarse aggregate by plastic aggregate. The trial mixes comprise the 25, 50, 75, and 100% replacement of natural coarse aggregate. The compressive strength of the resulting lightweight concrete with full replacement of coarse aggregate by plastic aggregate was 28 MPa. These slabs are considered to have a reduced dead weight due to using lightweight aggregate and due to reducing cross-section through using voids. The samples are tested under two verticals line loads. Several parameters are varied in this study such as; nature of coarse aggregate (natural or recycled), slab line load location, the shape of the core, core diameter, flexural reinforcement ratio, and thickness of the slab. Strain gauges are used in the present study to measure the strain of steel in each slab. The test samples were fourteen one-way reinforced concrete slabs. The slab's dimensions are (1000 mm), (600 mm), (200 mm), (length, width, and thickness). The change in the shape of the core from circular to square and the use of (100 mm) side length led to reducing the weight by about (46%). The cracking and ultimate strength is reduced by about (5%-6%) respectively. With similar values of deflection. The mode of failure will remain flexural. It is recognized that when the thickness of the slab changed from (200 mm to 175 mm) the result shows a reduction in cracking and ultimate strength by about (6% and 7%) respectively.

Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Rajabzadeh-Safaei, Niloofar
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.493-516
    • /
    • 2019
  • This paper is dedicated to nonlinear static and free vibration analysis of Uniform Distributed Carbon Nanotube Reinforced Composite (UD-CNTRC) structures under in-plane loading. The authors have suggested an efficient six-node triangular element. Mixed Interpolation of Tensorial Components (MITC) approach is employed to alleviate the membrane locking phenomena. Moreover, the behavior of the well-known LST element is considerably improved by applying an additional linear interpolation on the strain fields. Based on the rule of mixture, the properties of CNTRC are obtained. In this study, only the uniform distributed CNTs are employed through the thickness direction of element. To achieve the natural frequencies and shape modes, the eigenvalue problem is also solved. Using Total Lagrangian Principles, large amplitude free vibration is considered based on the first normalized mode shape of structure. Different well-known plane problem benchmarks and some proposed ones are studied to validate the accuracy and capability of authors' formulations. In addition, the effects of length to the height ratio of beam, CNT's characteristics, support conditions and normalized amplitude parameter on the linear and nonlinear vibration parameters are investigated.

해체.조립식 모듈러 철골조 기둥-보 접합부의 거동에 관한 실험적 연구 (An Experimental Study on the Behavior of Beam-to-Column Joints for Modular Steel Frame)

  • 정성림;강주원;박성무
    • 한국공간구조학회논문집
    • /
    • 제8권1호
    • /
    • pp.89-97
    • /
    • 2008
  • 본 논문은 유닛 모듈러를 구성하는 주구조체인 각형강관 기둥과 냉간성형 LEB C-형강 보로 볼트 접합된 접합부의 거동을 실험적으로 평가하는 것이 연구의 목적이다. 접합부에서 기둥과 LEB C-형강 보를 접합하기 위한 브라켓의 두께변화, LEB C-형강 보와 브라켓 접합부 볼트 개수 등의 주요변수에 대한 실험을 통하여 기둥-보 접합부의 내력증대와 변형성상 및 파괴모드 변화 등을 고찰하였다. 실험결과, 접합부의 보강형상과 관계없이 또한 접합부의 파괴 없이 LEB C-형강 보의 국부좌굴강도가 지배하는 것으로 파악되었으며, 브라켓 두께 크기에 따라 내력과 강성이 조금 높게 나타남을 알 수 있었다. 또한 접합부에 사용된 볼트 수량에 관계없이 강성면에서 큰 차이를 나타내지 않았으며 LEB C-형강과 브라켓을 볼트접합으로 반강접합의 역학적 거동 가능성을 확인하였다.

  • PDF