• Title/Summary/Keyword: mode shape analysis

Search Result 720, Processing Time 0.029 seconds

Fluid effect on the modal characteristics of a square tank

  • Jhung, Myung Jo;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1117-1131
    • /
    • 2019
  • Tanks are used extensively in many engineering areas for spent fuel pool structures at nuclear power plants or for water storage tanks in bulk carriers. To ensure the structural integrity of such tanks when under dynamic loads, modal characteristics such as natural frequencies, participation factors and mode shapes should be known. Investigated in this study are the modal characteristics of a square tank by the finite element method. This approach can be used with subsequent dynamic analyses such as a response spectrum analysis or a harmonic analysis. Finite element models are prepared to determine the natural frequencies and mode shapes, which are easy to find the modal characteristics of a fluid-filled square tank. The effects of the fluid contained in the tank and the boundary conditions at top and bottom ends on the modal characteristics are assessed by several finite element analyses.

Structural Modification for the Reduction of Radiation Noise of a Powertrain Based on CAE Technology (CAE를 이용한 파워트레인의 방사소음 저감을 위한 구조변경)

  • Song, Min-Keun;Oh, Ki-Seok;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.439-447
    • /
    • 2008
  • One of the key elements in efforts to minimize noise radiation from a powertrain is the knowledge of the main radiating component and the relation between the surface vibration of a powertrain and the sound pressure. In this research, the powertrain model is developed based on FEM(finite element method). This model is applied to the prediction of the vibration of a powertrain by using ADAMS and the radiation noise by using BEM(boundary element method). According to this numerical analysis, the surface vibration of a powertrain is investigated as a source of radiated noise. This surface vibration is caused by the 1st order natural vibration of the cylinder block and its mode shape is the torsion mode. Therefore, this mode shape is modified to reduce the surface vibration of the powertrain. The radiation noise of the modified powertrain is also reduced to $5{\sim}12\;dB$. This modification is very successful for the noise reduction based on the CAE technology.

Free Vibration Analysis of a Stepped Cantilever Beam with a Mass and a Spring at the End (끝단에 스프링과 질량을 가진 단진보의 자유진동해석)

  • Yu, Chun-Seung;Hong, Dong-Pyo;Chung, Tae-Jin;Chung, Kil-To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2812-2818
    • /
    • 1996
  • A cantilever beam with a mass and a spring at the end can be use to model a miniature flexible arm. It is necessary to know the natural frequencies and mode shapes to discuss its free vibration, especially when modal analysis is employed. A beam is clamped-free. In this paper we look at the lateral vibration of beams that have step changes in the properties of their cross sections. The frequency equation is derived by Bernoulli-Euler formulation and is sloved by the separation of variable. The parameters of the beam, 'mass and spring stiffness' are defined as nondimensionalized parameters for wide application of the results. According to the change of eigenvalues and mode shape are presented for this beam. The results presented are the eigenvalues and the natural frequencies for the first three modes of vibration. Results show that the parameters have a significant effect on the natural frequency.

A Study on the Vibration Behavior of Composite Laminate under Tensile Loading by ESPI (ESPI에 의한 인장하중 하에서의 복합재 적층판의 진동 거동에 관한 연구)

  • Yang, Seung-Pil;Kim, Koung-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kim, Chong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.516-521
    • /
    • 2000
  • Most of studies, using ESPI method, have handled tension, thermal and vibration analysis, and is limited to isotropic materials. However, tension and vibration simultaneously are loaded in real structure. Also, almost study using ESPI method is locally limited to the analysis on the isotropic materials and a few studies on the anisotropic materials have reported. Existing methods, such as the accelerometer method and FEA method, to analyze vibration have some disadvantages. Using the accelerometer method that is generally used to analyze vibration phenomena, it is impossible to analyze vibration on the oscillating body and one can observe no vibration mode shape during experiment. In case of the FEA method, it is difficult to define boundary conditions correctly if the shape of a body tested is complex, and one can just obtain vibration mode shapes on the peak amplitude in each modes. In this study, plane plate of stainless steel(STS304), isotropic material, that is used as structural steel is analyzed about vibration characteristics under tension. Also, in the study of stainless steel, the characteristics of composite material(AS4/PEEK) used as high strength structural material in aircraft is evaluated about vibration under tension, and studies the effect of tension on vibration.

  • PDF

J-integral Analysis by P-version Crack Model (P-version 균열모델에 의한 J-적분해석)

  • 이채규;우광성;윤영필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.38-45
    • /
    • 1994
  • P-version finite element model for the computation of stress intensity factors in two dimensional cracked panels by J-integral method is presented. The proposed model is based on high order theory and hierarchical shape function. The displacements fields are defined by integrals of Legendre polynomials which can be classified into three part such as basic mode, side mode, integral mode. The stress intensity factors are computed by J-integral method. The example models for validating the proposed p-version model are centrally cracked panel, single and double edged crack in a rectangular panel under pure Mode I. And the analysis results are compared with those by the h-version of FEM and empirical solutions in literatures. Very good agreement with the existing solution are shown.

  • PDF

Resonant vibration of piezoceramic plates in fluid

  • Lin, Yu-Chih;Ma, Chien-Ching
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.177-190
    • /
    • 2008
  • In this paper, both experimental measurement and theoretical analysis are used to investigate the out-of-plane resonant characteristics of a cantilevered piezoceramic plate in air and three different kinds of fluid. The experimental method, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), is the major technique used in this study to measure the resonant characteristics of the cantilivered piezoceramic plate. Both resonant frequencies and full-field mode shapes are obtained from this experimental technique. Numerical computations based on the finite element analysis are presented for comparison with the experimental results. Good quality of mode shapes for the cantilevered piezoceramic plate in air is obtained from the AF-ESPI technique. However, the quality decreases as the viscosity of fluids increases. From the results provided from experimental measurements and numerical computations, it is indicated that the resonant frequencies of the cantilevered piezoceramic plate in fluid decrease with the increase of the viscosity of fluids. Good agreements between the experimental measured data and the numerical calculated results are found for both resonant frequencies and mode shapes of the cantilevered piezoceramic plate in fluid.

Finite Element Analysis of Step-down Piezoelectric Transformer with Various Shape (형태의 변화에 따른 강압용 압전변압기의 유한요소해석)

  • Chong, Hyon-Ho;Park, Tae-Gone;Kwon, Oh-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.697-700
    • /
    • 2003
  • This paper presents design and analysis of step-down piezoelectric transformer for application to AC-adapters. These transformers are consist of rectangular type and disk type multilayered piezoelectric ceramic plate. This piezoelectric transformer operated in third thickness resonance vibration mode. Finite element methode(FEM) was used for analysing transformer. Vibration mode and electric field of piezoelectric transformer were simulated at resonance frequency. As results, rectangular type transformer's output voltage was higher than the disk type. But disk type transformer's current was lagger than rectangular type. These results are assumed that disk type transformer's mixed vibration mode influence transformer's output characteristics. From these results, we expect that disk type piezoelectric transformer is more adoptable than rectangular plate type piezoelectric transformer for AC adapters.

  • PDF

A Horn of Half-Wave Design for Ultrasonic Metal Welding (초음파 금속 용착용 반파장 혼의 설계)

  • Jang, Ho-Su;Park, Woo-Yeol;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.76-81
    • /
    • 2012
  • Ultrasonic metal welding is one of the welding methods which welds metal by applying high frequency vibrational energy into specific area at constant pressure, avaliable in room temperature and low temperature. Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each parts' shape, length and mass can affect driving frequency and vibration mode. This paper focused to horn design, its length L was set to 62mm by calculating vibration equation. By performing modal analysis with various shape variable b times integer, when length of b is 30mm the output was 39,599Hz at 10th mode. Also by performing harmonic response analysis, the frequency response result was 39,533Hz, which was similar to modal analysis result. In order to observe the designed horn's performance, about 4,000 voltage data was obtained from a light sensor and was analyzed by FFT analysis using Origin Tool. The result RMS amplitude was approximately 8.5${\mu}m$ at 40,000Hz, and maximum amplitude was 12.3${\mu}m$. Therefore, it was verified that the ultrasonic metal welding horn was optimally designed.

Squeal Noise Analysis and Reduction of Drum Brake Using Component Mode Synthesis (구분모드합성에 의한 드럼 브레이크 스퀼 소음 해석 및 저감)

  • Kim, Jin-Ho;Bae, Byung-Ju;Lee, Shi-Bok;Kim, Tae-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.72-80
    • /
    • 2005
  • Recent studies have dealt with brake squeal in terms of the coupled vibration of brake component parts. In this paper, we assemble the mode models derived from FE analysis of the individual components of the drum brake system into the system model by considering the friction interaction of the lining and drum at the interface. The validity of the component models are backed up by the experimental confirmation work. By scrutinizing the real parts of the complex eigen-values of the system, the unstable modes, which may be strong candidate sources of squeal noise, are identified. Mode participation factors are calculated to examine the modal coupling mechanism. The model predictions for the unstable frequencies pointed well the actual squeal noise frequencies measured through field test. Sensitivity analysis is also performed to identify parametric dependency trend of the unstable modes, which would indicate the direction for the squeal noise reduction design. Finally, reduction of the squeal noise tendency through shape modification is tried.

Vortex-Induced Vibration Analysis of Deep-Sea Riser (심해 라이저의 와류유기 진동해석)

  • Park, Seongjong;Kim, Bongjae
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.364-370
    • /
    • 2017
  • A numerical model based on the mode superposition method is used to study the vortex-induced vibration response characteristics of a deep-sea riser such as steel catenary riser (SCR). A steel catenary riser can be modeled using a flexible cable with simple supports at both ends. The natural frequency, mode shape and mode curvature of the riser are calculated and the vortex-induced vibration response of the riser is obtained using the equilibrium of the input and output power. The mode superposition method is applied to the vibrational stresses for each mode to calculate the overall riser fatigue life.