• Title/Summary/Keyword: mode contribution

Search Result 205, Processing Time 0.025 seconds

- Development of Digital Fluoroscopic Image Recording System for Customer Safety - (고객 안전을 위한 디지털 방사선장치(DRF)의 투시영상기록장치 개발)

  • Rhim Jae Dong;Kang Kyong Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.3
    • /
    • pp.303-309
    • /
    • 2004
  • Many system devices for fluoroscopic and general X-ray studies in diagnostic radiographic system have been being changed from analog mode to digital mode. In addition, among diagnostic imaging and radiologic examinations, fluoroscopic studies that requires functional diagnosis is being widely used. The video recording method of fluoroscopic studies has been useful in functional image diagnosis and dynamic image observation, but the utility of its image quality is being reduced because of limitation in setting play segments of the video player, inconvenience of play, difficulties in preserving reproduced images, the change of image quality, etc. In order to complement these shortages, it is necessary to facilitate access to patient diagnosis information such as storing, editing and sharing functional diagnosis images in response to the trend of the digitalization of digital radiographic & fluoroscopic system(DRF). Thus this study designed and implemented a device of storing functional dynamic images real time using a computer rather than existing video recording, aiming at contribution to functional image diagnosis.

An interface element for modelling the onset and growth of mixed-mode cracking in aluminium and fibre metal laminates

  • Hashagen, Frank;de Borst, Rene
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.817-837
    • /
    • 1997
  • In the present contribution an interface crack model is introduced which is capable of modelling crack initialisation and growth in aluminium as well as in Fibre Metal Laminates. Interface elements are inserted in a finite element mesh with a yield function which bounds all states of stress in the interface. Hardening occurs after a state of stress exceeds the yield stress of the material. The hardening branch is bounded by the ultimate stress of the material. Thereafter, the state of stress is reduced to zero while the inelastic deformations grow. The energy dissipated by the inelastic deformations in this process equals the fracture energy of the material. The model is applied to calculate the onset and growth of cracking in centre cracked plates made of aluminium and GLARE$^{(R)}$. The impact of the model parameters on the performance of the crack model is studied by comparisons of the numerical results with experimental data.

New Security Layer for OverLay Networks

  • Imai, Hideki;Shin, Seong-Han;Kobara, Kazukuni
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.211-228
    • /
    • 2009
  • After clarifying the underlying problems in a secure network storage, we introduce two important requirements, leakageresilience and availability in higher levels respectively, for data keys that are used to protect remotely-stored data. As a main contribution of this paper, we give a new security layer for overlay networks by proposing a leakage-resilient authentication and data management system. In this system, we specifically propose a single mode and a cluster mode where the latter provides a higher level of both leakage-resilience and availability for the data key.

An improved cross-correlation method based on wavelet transform and energy feature extraction for pipeline leak detection

  • Li, Suzhen;Wang, Xinxin;Zhao, Ming
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.213-222
    • /
    • 2015
  • Early detection and precise location of leakage is of great importance for life-cycle maintenance and management of municipal pipeline system. In the past few years, acoustic emission (AE) techniques have demonstrated to be an excellent tool for on-line leakage detection. Regarding the multi-mode and frequency dispersion characteristics of AE signals propagating along a pipeline, the direct cross-correlation technique that assumes the constant AE propagation velocity does not perform well in practice for acoustic leak location. This paper presents an improved cross-correlation method based on wavelet transform, with due consideration of the frequency dispersion characteristics of AE wave and the contribution of different mode. Laboratory experiments conducted to simulate pipeline gas leakage and investigate the frequency spectrum signatures of AE leak signals. By comparing with the other methods for leak location identification, the feasibility and superiority of the proposed method are verified.

Effect of masonry infilled panels on the seismic performance of a R/C frames

  • Aknouche, Hassan;Airouche, Abdelhalim;Bechtoula, Hakim
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.329-348
    • /
    • 2019
  • The main objective of this experimental research was to investigate the Seismic performance of reinforced concrete frames infilled with perforated clay brick masonry wall of a type commonly used in Algeria. Four one story-one bay reinforced concrete infilled frames of half scale of an existing building were tested at the National Earthquake Engineering Research Center Laboratory, CGS, Algeria. The experiments were carried out under a combined constant vertical and reversed cyclic lateral loading simulating seismic action. This experimental program was performed in order to evaluate the effect and the contribution of the infill masonry wall on the lateral stiffness, strength, ductility and failure mode of the reinforced concrete frames. Numerical models were developed and calibrated using the experimental results to match the load-drift envelope curve of the considered specimens. These models were used as a bench mark to assess the effect of normalized axial load on the seismic performance of the RC frames with and without masonry panels. The main experimental and analytical results are presented in this paper.

The Observational Evidence for the Internal Excitation of Umbral Velocity Oscillations

  • Cho, Kyuhyoun;Chae, Jounchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.47.2-47.2
    • /
    • 2018
  • The umbral oscillations of velocity are commonly observed in the chromosphere of a sunspot. Their sources are considered to be either the external p-mode driving or the internal excitation by magnetoconvection. Even though the possibility of the p-mode driving has been often considered, the internal excitation has been rarely investigated. We report the observational evidence for the internal excitation obtained by analyzing velocity oscillations in the temperature minimum region of a sunspot umbra. The velocity oscillations in the temperature minimum region were determined from Fe I $5435{\AA}$ line data taken by the Fast Imaging Solar Spectrograph (FISS) of the 1.6 m Goode solar Telescope (GST) at the Big Bear Solar Observatory. As a result, we discovered 4 events of oscillations which appear to be internally excited. We analyze their characteristics and relation to photospheric features. Based on these results, we estimate the contribution of the internal excitation for umbral oscillations and discuss their importance.

  • PDF

Generalized complex mode superposition approach for non-classically damped systems

  • Chen, Huating;Liu, Yanhui;Tan, Ping
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.271-286
    • /
    • 2020
  • Passive control technologies are commonly used in several areas to suppress structural vibrations by the addition of supplementary damping, and some modal damping may be heavy beyond critical damping even for regular structures with energy dissipation devices. The design of passive control structures is typically based on (complex) mode superposition approaches. However, the conventional mode superposition approach is predominantly applied to cases of under-critical damping. Moreover, when any modal damping ratio is equal or close to 1.0, the system becomes defective, i.e., a complete set of eigenvectors cannot be obtained such that some well-known algorithms for the quadratic eigenvalue problem are invalid. In this paper, a generalized complex mode superposition method that is suitable for under-critical, critical and over-critical damping is proposed and expressed in a unified form for structural displacement, velocity and acceleration responses. In the new method, the conventional algorithm for the eigenvalue problem is still valid, even though the system becomes defective due to critical modal damping. Based on the modal truncation error analysis, modal corrected methods for displacement and acceleration responses are developed to approximately consider the contribution of the truncated higher modes. Finally, the implementation of the proposed methods is presented through two numerical examples, and the effectiveness is investigated. The results also show that over-critically damped modes have a significant impact on structural responses. This study is a development of the original complex mode superposition method and can be applied well to dynamic analyses of non-classically damped systems.

Effects of Heat Losses on Edge-flame Instabilities in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 에지화염 불안정성에 관한 열손실 효과)

  • Park June-Sung;Hwang Dong-Jin;Kim Jeong-Soo;Keel Sang-In;Kim Tae-Kwon;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.996-1002
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified

Analysis of Emission Gas Characteristics for Gasoline Vehicles using the Inspection Results of Car Emission (운행차 배출가스 정밀검사 결과를 이용한 가솔린 차량에 대한 배출가스 특성 분석)

  • Roh, Hyun Gu
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.128-135
    • /
    • 2018
  • In this study, the following conclusions could be obtained from the analysis of emissions contribution rates and features for contaminated emissions by 13,456 gasoline vehicles passed in the vehicle load test (ASM-idle) under the inspection year 2013 to 2017. It was confirmed that the contamination of the CO, HC, NOx by the displacement is reduced on over 3L engine. As a result of comparing the exhaust gas in the low speed idle mode and the AS2525 mode, the exhaust gas in the low speed idle mode was measured high. It is estimated that if ISG function is applied, emissions from idle condition will be reduced. NOx emissions were reduced when the engine power was above 200HP. It has been confirmed that the amount of exhaust emissions are significantly reduced for vehicles manufactured after 2004. As a result of analyzing the exhaust gas according to the season, it is judged that there is a correlation between HC and NOx according to the ambient temperature. The concentration of exhaust emission in vehicles with high accumulated distance increases, which is considered to be the result of aging of the vehicle.

AN EXTENSION OF A RELIABLE WAVELENGTH COVERAGE OF THE AKARI NG GRISM MODE

  • Baba, Shunsuke;Nakagawa, Takao;Isobe, Naoki;Shirahata, Mai;Ohyama, Youichi;Yano, Kenichi;Kochi, Chihiro
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.45-47
    • /
    • 2017
  • The Infrared Camera onboard the AKARI satellite carried out spectroscopic observations with a grism mode named NG, whose wavelength coverage was $2.5-5.0{\mu}m$. We reinvestigate the current flux calibration for the NG grism mode, with which calculated flux density implausibly decreases at $4.9{\mu}m$ especially for red objects due to the second-order light contamination. We perform a new spectral response calibration using blue and red standard objects simultaneously. New response curves which contain both the first-and second-order light are able to separate each contribution consistently and useful for studies of red objects such as CO ro-vibrational absorption in active galactic nuclei.