• Title/Summary/Keyword: mode II fracture toughness

Search Result 56, Processing Time 0.023 seconds

Mehods of Fracture Toughness and Evaluation for Interface Crack in Adhesively Bonded Joints (접착이음의 계면균열에 대한 파괴인성 및 평가방법)

  • 정남용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.220-226
    • /
    • 1998
  • In this pater, a method of strength evaluation applying fracture mechanics in adhesively bonded joints of A1/A1 materials was investigated. Various adhesively bonded joints of double-cantilever beam with a interfacial crack in its adhesive layer were prepared for the fracture toughness test of comprehensive mixed mode conditions from nearly pure mode I to mode II. The experiment of fracture toughness was carried out under various mixed mode conditions with an interfacial crack and critical energy release rate, Gc by the experimental measurements of compliances was determined. From the results, fracture toughness on mixed mode with an interfacial crack is well characterized by strain energy release rate and a method of strength evaluation by the fracture toughness in adhesively bonded joints of A1/A1 materials was discussed.

  • PDF

Mode II and Mixed Mode Fracture of Single Layer Graphene Sheet (단층 그래핀시트의 모드 II 및 혼합모드 파괴)

  • Nguyen, Minh-Ky;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • The mode II fracture behavior of a single-layer graphene sheet (SLGS) containing a center crack was characterized with the results of an atomistic simulation and an analytical model. The fracture of zigzag graphene models was analyzed with molecular dynamics and the mode II fracture toughness was found to be $2.04MPa{\sqrt{m}}$. The in-plane shear fracture of a cellular material was analyzed theoretically for deriving the $K_{IIc}$ of SLGS, and FEM results were obtained. Mixed-mode fracture of SLGS was studied for various mode I and mode II ratios. The mixed-mode fracture criterion was determined, and the obtained fracture envelope was in good agreement with that of another study.

Evaluation of Mode II Dynamic Interlaminar Fracture Toughness of Unidirectional CFRP Laminates (일방향 CFRP적층판의 모드II 동적 층간파괴인성 평가)

  • Kim, Ji-Hoon;Jeong, Tae-Hoon;Lee, Hyun;Yang, In-Young;Cho, Gyu-Jae;Sim, Jae-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2000
  • In this paper, an investigation was performed on the ModeII dynamic interlaminar fracture toughness of unidirectional CFRP laminates. The stacking sequences used in this experiment are two kinds of [$0_20$] and [$0_{10}F_20_{10}$]. In the experiments, Split Hopkinson's Bar test was applied to dynamic and notched flexure test. The Mode II fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-Integral with the measured impulsive load and reactions at the supported points. As an experimental results, the specimen [$0_{10}F_20_{10}$] appears greater than that of [$0_20$] for the J-integral and displacement velocity at a measuring point within the range of experiment.

  • PDF

Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite

  • Al-Fasih, M.Y.;Kueh, A.B.H.;Abo Sabah, S.H.;Yahya, M.Y.
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.241-253
    • /
    • 2018
  • Mode II fracture toughness, $K_{IIC}$, of single-ply triaxially woven fabric (TWF) composite due to tow waviness and anisotropy effects were numerically and experimentally studied. The numerical wavy beam network model with anisotropic material description denoted as TWF anisotropic was first validated with experimental Mode II fracture toughness test employing the modified compact tensile shear specimen configuration. 2D planar Kagome and TWF isotropic models were additionally constructed for various relative densities, crack lengths, and cell size parameters for examining effects due to tow waviness and anisotropy. $K_{IIC}$ generally increased with relative density, the inverse of cell size, and crack length. It was found that both the waviness and anisotropy of tow inflict a drop in $K_{IIC}$ of TWF. These effects were more adverse due to the waviness of tow compared to anisotropy.

A Study on the Interlaminar Fracture Toughness of Glass Fiber Reinforced Plastic Comosites (GFRP 복합재료의 층간파괴인성치에 관한 연구)

  • 박기호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.410-420
    • /
    • 1999
  • The value of the mode I interlamina fracture toughness, GIC, is calculated by experimental compliance method, modified compliance method and beam theory. The value of the mode II interlamina fracture toughness, GIC, is evaluated by beam method, theory beam theory and compliance method. This paper describes the effect of load pint displacement rate and speicimen geometries for mode I and II interlaminar fracture toughness of glass fiber reinforced plastic composites by using double cantilever beam (DCB) and end notched flexure (ENF) specimen. For the load point displacement rate of increases whereas the value of 2,6 and 10 mm/min the value of GIC decrease as load point displacement rate increases whereas the value of GIC is found to be no significant effect. The value of GIC decreases as initial crack length increases. The fractured surface of the DCB and ENF samples are examined by scanning electron microscopy (SEM).

  • PDF

A Study on Mixed Mode I/II Interlaminar Fracture Toughness of Carbon Fiber Reinforced Plastic Composites (CFRP 복합재료의 혼합모드 I/II 층간파괴인성치에 관한 연구)

  • Kim, H.J.;Park, M.I.;Kim, J.D.;Koh, S.W.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.48-54
    • /
    • 2000
  • This paper describes the effect of molding pressure, specimen geometries for Mixed Mode I/II interlaminar fracture toughness of carbon fiber reinforced plastic composites by using asymmetrical double cantilever beam(ADCB) specimen. The value of $G_{I/IIC}$ as a function of various molding pressure is almost same at 307, 431, 585 kPa. However it shows the highest value under 307 kPa molding pressure. The effect of $G_{I/IIC}$ due to the change of initial crack length of ADCB specimen was almost negligible in this study. It turns out that the condition for mix mode quasi-static crack growth in ADCB specimen is the ratio of the crack length to that of the specimen, i.e., ${\alpha}/L<0.4$.

  • PDF

A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite (炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.198-207
    • /
    • 1986
  • This study investigates interlaminar fracture characteristics of Graphite/Epoxy composite (HFG Graphite/Epoxy) under mode I (opening mode), mode II (sliding mode) and mixed mode loading conditions. The effects on interlaminar fracture toughness due to different fiber orientations on the crack surface are also investigated. The antisymmetric test fixture proposed by M. Arcan is used for this test. Both critical stress intensity foctors and critical energy release rates were determined and several mixed mode fracture criteria were compared to the experimental data. Also fracture surfaces were investigaed to obtain informations on the fracture behaviors of Graphite/Epoxy composite by means of a scanning electron microscope(SEM).

Impact of temperature cycling on fracture resistance of asphalt concretes

  • Pirmohammad, Sadjad;Kiani, Ahad
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.541-551
    • /
    • 2016
  • Asphalt pavements are exposed to complex weather conditions and vehicle traffic loads leading to crack initiation and crack propagation in asphalt pavements. This paper presents the impact of weather conditions on fracture toughness of an asphalt concrete, prevalently employed in Ardabil road networks, under tensile (mode I) and shear (mode II) loading. An improved semi-circular bend (SCB) specimen was employed to carry out the fracture experiments. These experiments were performed in two different weather conditions namely fixed and cyclic temperatures. The results showed that consideration of the impact of temperature cycling resulted in decreasing the fracture toughness of asphalt concrete significantly. Furthermore, the fracture toughness was highly affected by loading mode for the both fixed and cyclic temperature conditions studied in this paper. In addition, it was found that the MTS criterion correctly predicts the onset of fracture initiation although this prediction was slightly conservative.

The Mixed Mode Fracture Using Concrete Disk (콘크리트 디스크를 이용한 혼합모드 파괴)

  • 진치섭;김희성;정진호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.63-69
    • /
    • 2000
  • This study investigates a new method of using a concrete disk to calculate stress intensity factor (SIF) for mixed mode cases. The results indicate that the disk method is more accurate than three point bending test (TPB) in obtaining correct SIF values for mixed mode fracture propagation. Stress intensity factors $K_{I}$ and $K_{II}$ are calculated using a center notched disk subjected to splitting load. The notch angle is calculated by finite element (FEM). Fracture toughness $K_\textsc{k}$ of the concrete is obtained from the load intensities at the initiation of crack propagation. According to the finite element analysis(FEA) and disk test, the results show that mode I and mixed mode cracks propagate toward the directions of crack face and loading point, respectively. The results from FEA with maximum stress theory compare well with the experimental date. Unlike TPB method where an accurate fracture toughness value is difficult to obtain due to the irregular shape of load deflection curve and delayed final crack propagation (following slow stable cracking). fracture toughness value is easily measured in the disk test from the crack initial load. Therefore, it is safe to conclude that disk method is more advantageous than TPB method in analyzing combined mode fracture problems.

Mixed-mode fracture toughness measurement of a composite/metal interface (복합재료/금속 접착 계면의 혼합모드 파괴인성 측정)

  • Kim, Won-Seock;Jang, Chang-Jae;Lee, Jung-Ju
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • Interfacial fracture toughness under various mixed-mode loading is measured to provide a mixed-mode fracture criterion of a composite/metal bonded joint. Experimental fracture characterization tests were carried out using a SLB (single leg bending) specimen, which controls mode ratio with the specimen thickness. The experimental result of the SLB test conforms that interfacial fracture toughness increases as the mode II component increases. The effect of loading mode on interfacial crack growth is investigated on the basis of crack path observation using microscopic image acquisition technique. The influence of interfacial roughness on adhesion strength is also discussed.