• Title/Summary/Keyword: modal vector

Search Result 97, Processing Time 0.028 seconds

Structural damage detection based on residual force vector and imperialist competitive algorithm

  • Ding, Z.H.;Yao, R.Z.;Huang, J.L.;Huang, M.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.709-717
    • /
    • 2017
  • This paper develops a two-stage method for structural damage identification by using modal data. First, the Residual Force Vector (RFV) is introduced to detect any potentially damaged elements of structures. Second, data of the frequency domain are used to build up the objective function, and then the Imperialist Competitive Algorithm (ICA) is utilized to estimate damaged extents. ICA is a heuristic algorithm with simple structure, which is easy to be implemented and it is effective to deal with high-dimension nonlinear optimization problem. The advantages of this present method are: (1) Calculation complexity can be decreased greatly after eliminating many intact elements in the first step. (2) Robustness, ICA ensures the robustness of the proposed method. Various damaged cases and different structures are investigated in numerical simulations. From these results, anyone can point out that the present algorithm is effective and robust for structural damage identification and is also better than many other heuristic algorithms.

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

Truss structure damage identification using residual force vector and genetic algorithm

  • Nobahari, Mehdi;Ghasemi, Mohammad Reza;Shabakhty, Naser
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.485-496
    • /
    • 2017
  • In this paper, damage detection has been introduced as an optimization problem and a two-step method has been proposed that can detect the location and severity of damage in truss structures precisely and reduce the volume of computations considerably. In the first step, using the residual force vector concept, the suspected damaged members are detected which will result in a reduction in the number of variables and hence a decrease in the search space dimensions. In the second step, the precise location and severity of damage in the members are identified using the genetic algorithm and the results of the first step. Considering the reduced search space, the algorithm can find the optimal points (i.e. the solution for the damage detection problem) with less computation cost. In this step, the Efficient Correlation Based Index (ECBI), that considers the structure's first few frequencies in both damaged and healthy states, is used as the objective function and some examples have been provided to check the efficiency of the proposed method; results have shown that the method is innovatively capable of detecting damage in truss structures.

Determination of Optimal Accelerometer Locations using Mode-Shape Sensitivity (진동형상 민감도에 의한 가속도계 최적위치 결정)

  • Kwon, Soon-Jung;Shin, Soo-Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.29-36
    • /
    • 2006
  • This paper proposes a new algorithm of MS-EIDV (modal sensitivity-effective independence distribution vector) for determining optimal accelerometer locations (OAL) by using the Fisher Information Matrix (FIM) derived from mode-shape sensitivities. Also, the paper provides a reasonable guideline for selecting OAL which can reflect dynamic responses of a structure effectively. Since OAL should be determined with known values of structural parameters but since the parameters can be estimated by applying an inverse method such as SI (system identification) using measured response, the paper proposes a statistical method to overcome the paradox by considering the error bound of the structural parameters. To examine the proposed methods, a frequency-domain SI method has been applied. By using the identified results, the minimum necessary number of accelerometers could be selected depending on the number of target measurable modes. Through simulation studies, the results by applying EIDV method directly using the information of mode shapes were compared with those by applying the proposed MS-EIDV.

Expression Analysis System of Game Player based on Multi-modal Interface (멀티 모달 인터페이스 기반 플레이어 얼굴 표정 분석 시스템 개발)

  • Jung, Jang-Young;Kim, Young-Bin;Lee, Sang-Hyeok;Kang, Shin-Jin
    • Journal of Korea Game Society
    • /
    • v.16 no.2
    • /
    • pp.7-16
    • /
    • 2016
  • In this paper, we propose a method for effectively detecting specific behavior. The proposed method detects outlying behavior based on the game players' characteristics. These characteristics are captured non-invasively in a general game environment and add keystroke based on repeated pattern. In this paper, cameras were used to analyze observed data such as facial expressions and player movements. Moreover, multimodal data from the game players was used to analyze high-dimensional game-player data for a detection effect of repeated behaviour pattern. A support vector machine was used to efficiently detect outlying behaviors. We verified the effectiveness of the proposed method using games from several genres. The recall rate of the outlying behavior pre-identified by industry experts was approximately 70%. In addition, Repeated behaviour pattern can be analysed possible. The proposed method can also be used for feedback and quantification about analysis of various interactive content provided in PC environments.

Parameter identification for nonlinear behavior of RC bridge piers using sequential modified extended Kalman filter

  • Lee, Kyoung Jae;Yun, Chung Bang
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.319-342
    • /
    • 2008
  • Identification of the nonlinear hysteretic behavior of a reinforced concrete (RC) bridge pier subjected to earthquake loads is carried out based on acceleration measurements of the earthquake motion and bridge responses. The modified Takeda model is used to describe the hysteretic behavior of the RC pier with a small number of parameters, in which the nonlinear behavior is described in logical forms rather than analytical expressions. Hence, the modified extended Kalman filter is employed to construct the state transition matrix using a finite difference scheme. The sequential modified extended Kalman filter algorithm is proposed to identify the unknown parameters and the state vector separately in two steps, so that the size of the problem for each identification procedure may be reduced and possible numerical problems may be avoided. Mode superposition with a modal sorting technique is also proposed to reduce the size of the identification problem for the nonlinear dynamic system with multi-degrees of freedom. Example analysis is carried out for a continuous bridge with a RC pier subjected to earthquake loads in the longitudinal and transverse directions.

A Mode Sorting Method Using the MAC of a Rotor-bearing System (MAC을 이용한 회전축계 시스템의 모드정렬 방법)

  • Lim, Jonghyuk;Kim, Minsung;Lee, Kyuho;Park, Chuljun;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.329-336
    • /
    • 2015
  • This paper presents a sorting method of mode vectors and natural frequencies about a rotor-journal bearing system. The rotor is solved by the finite element method, the bearing stiffness and damping coefficient are solved by the finite difference method. At any rotation speed section through the eigenvalue analysis of the system, mode vectors and natural frequencies not sorted are confirmed via the Campbell diagram and the MAC(modal assurance criterion). To sort mode vectors and natural frequencies of the section, a mode sorting method is presented through a method of rearranging the MAC of the mode vectors. Finally, the mode vectors and the natural frequencies are sorted by using the presented method, these are verified through the MAC.

Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations

  • Asadzadeh, Esmaeil;Alam, Mehtab;Asadzadeh, Sahebali
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.797-816
    • /
    • 2014
  • Cooling tower is analyzed as an assembly of layered nonlinear shell elements. Geometric representation of the shell is enabled through layered nonlinear shell elements to define the different layers of reinforcements and concrete by considering the material nonlinearity of each layer for the cooling tower shell. Modal analysis using Ritz vector analysis and nonlinear time history analysis by direct integration method have been carried out to study the effects of the inclination of the supporting columns of the cooling tower shell on its dynamic characteristics. The cooling tower is supported by I-type columns and ${\Lambda}$-type columns supports having the different inclination angles. Relevant comparisons of the dynamic response of the structural system at the base level (at the junction of the column and shell), throat level and at the top of the tower have been made. Dynamic response of the cooling tower is found to be significantly sensitive to the change of the inclination of the supporting columns. It is also found that the stiffness of the structure system increases with increase in inclination angle of the supporting columns, resulting in decrease of the period of the structural system. The participation of the stiffness of the tower in structural response of the cooling tower is fund to be dependent of the change in the inclination angle and even in the types of the supporting columns.

A Mathematical Formulation of the Structural-acoustic System with an Opening and a Flexible Structure (입구와 유연한 구조물로 구성된 경계를 가지는 구조-음향 연성계의 수학적 표현)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.527-535
    • /
    • 2005
  • This paper explains a general coupling system in terms of the system parameters. impedance of a cavity or mobility of a structure. To easily access the mechanism of the structural-acoustic coupled system, a simple expression is derived. A general coupled equation is also derived of a general coupled problem constituted a flexible structure and an opening boundary in terms of vector and matrix notation, and is analyzed the coupling phenomena using the understanding acquired simple coupled system. The paper shows that the general coupled equation is expanded version of the simple coupled equation by some limiting checks. The paper also shows that the degree of coupling is proportioned to a stiffness of the acoustic system and a modal coupling coefficient, but is in inverse proportion to a mass of the structural system and the difference of the excitation frequency and resonant frequency of the acoustic or structural system.

Developing a Three-dimensional Spectral Model Using Similarity Transform Technique (유사변환기법을 이용한 3차원 모델의 개발)

  • Kang, Kwan-Soo;So, Jae-Kwi;Jung, Kyung-Tae;Sonu, Jung Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.107-120
    • /
    • 1993
  • This paper presents a new modal solution of linear three-dimensional hydrodynamic equations using similarity transform technique. The governing equations are first separated into external and internal mode equations. The solution of the internal mode equation then proceeds as in previous modal models using the Galerkin method but with expansion of arbitrary basis functions. Application of similarity transform to resulting full matrix equations gives rise to a set of uncoupled partial differential equations of which the unknowns are coefficients of mode vector. Using the transform technique a computationally efficient time integration is possible. In present from the model use Chebyshev polynomials for Galerkin solution of internal mode equations. To examine model performance the model is applied to a homogeneous, rectangular basin of constant depth under steady, uniform wind field.

  • PDF