• 제목/요약/키워드: modal strain energy index

검색결과 18건 처리시간 0.029초

Results and implications of the damage index method applied to a multi-span continuous segmental prestressed concrete bridge

  • Wang, Ming L.;Xu, Fan L.;Lloyd, George M.
    • Structural Engineering and Mechanics
    • /
    • 제10권1호
    • /
    • pp.37-51
    • /
    • 2000
  • Identification of damage location based on modal measurement is an important problem in structural health monitoring. The damage index method that attempts to evaluate the changes in modal strain energy distribution has been found to be effective under certain circumstances. In this paper two damage index methods using bending strain energy and shear strain energy have been evaluated for numerous cases at different locations and degrees of damage. The objective is to evaluate the feasibility of the damage index method to localize the damage on large span concrete bridge. Finite element models were used as the test structures. Finally this method was used to predict the damage location in an actual structure, using the results of a modal survey from a large concrete bridge.

Structural damage identification based on genetically trained ANNs in beams

  • Li, Peng-Hui;Zhu, Hong-Ping;Luo, Hui;Weng, Shun
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.227-244
    • /
    • 2015
  • This study develops a two stage procedure to identify the structural damage based on the optimized artificial neural networks. Initially, the modal strain energy index (MSEI) is established to extract the damaged elements and to reduce the computational time. Then the genetic algorithm (GA) and artificial neural networks (ANNs) are combined to detect the damage severity. The input of the network is modal strain energy index and the output is the flexural stiffness of the beam elements. The principal component analysis (PCA) is utilized to reduce the input variants of the neural network. By using the genetic algorithm to optimize the parameters, the ANNs can significantly improve the accuracy and convergence of the damage identification. The influence of noise on damage identification results is also studied. The simulation and experiment on beam structures shows that the adaptive parameter selection neural network can identify the damage location and severity of beam structures with high accuracy.

빔 구조물의 모달 변형에너지를 이용한 손상탐지 (Damage Detection in a Beam Structure Using Modal Strain Energy)

  • 박수용;최상현
    • 한국전산구조공학회논문집
    • /
    • 제16권3호
    • /
    • pp.333-342
    • /
    • 2003
  • 본 논문의 목적은 빔 구조물에서 발생할 수 있는 손상의 위치를 탐색하고, 그 손상의 정도를 추정할 수 있는 알고리즘을 제안하는 것이다. 제안된 방법은 구조물의 모달 변형에너지의 차이를 이용한다. 구조물 내 발생한 국부적인 손상의 위치를 파악하고 그에 상응하는 손상도를 추정할 수 있는 손상지수를 손상 전과 손상 후 구조물의 모드형상에서 얻을 수 있는 모달 변위로 표현하였고 그 관계식을 정립하였다. 구조물 내 손상의 위치를 결정하는 방법은 기 개발된 손상 지표를 적용하였다. 제안된 방법의 우수성과 효용성은 수치적으로 손상을 모사한 빔 구조물을 이용하여 입증하였다.

A modified index for damage detection of structures using improved reduction system method

  • Arefi, Shahin Lale;Gholizad, Amin;Seyedpoor, Seyed Mohammad
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.1-22
    • /
    • 2020
  • The modal strain energy method is one of the efficient methods for detecting damage in the structures. Due to existing some limitations in real-world structures, sensors can only be located on a limited number of degrees of freedom (DOFs) of a structure. Therefore, the mode shape values in all DOFs of structures cannot be measured. In this paper, a modified modal strain energy based index (MMSEBI) is introduced to locate damaged elements of structures when a limited number of sensors are used. The proposed MMSEBI is based on the reconstruction of mode shapes using Improved Reduction System (IRS) method. Therefore, in the first step by employing IRS method, mode shapes in slave degrees of freedom are estimated by those of master degrees of freedom. In the second step, the proposed MMSEBI is used to located damage elements. In order to evaluate the efficiency of the proposed method, two numerical examples are considered under different damage patterns considering the measurement noise. Moreover, the universal threshold based on statistical hypothesis testing principles is applied to damage index values. The results show the effectiveness of the proposed MMSEBI for the structural damage localization when comparing with the available damage index named MESBI. The results demonstrate that the presented method can be used as a practical strategy for structural damage identification, especially when a limited number of sensors are installed on the structure. Finally, the combination of MMSEBI and IRS method can provide a reliable tool to identify the location of damage accurately.

가속도 및 변형률 계측데이터를 이용한 철골 단순보 손상평가 (Damage Evaluation of a Simply Supported Steel Beam Using Measured Acceleration and Strain Data)

  • 박수용;박효선;이홍민;최상현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.167-174
    • /
    • 2006
  • In this paper, the applicability of strain data to a strain-energy-based damage evaluation methodology in detecting damage in a beam-like structure is demonstrated. For the purpose of this study, one of the premier damage evaluation methodology based on modal amplitudes, the damage index method, is expanded to accomodate strain data, and the numerical and experimental verifications are conducted using numerical and experimental data. To compare the relative performance of damage detection, the damage evaluation using acceleration data is also performed for the same damage scenarios. The experimental strain and acceleration data are extracted from laboratory static and dynamic tests. The numerical and experimental studies show that the strain data as well as acceleration data can be utilized in detecting damage.

  • PDF

정적 변형률을 이용한 플로팅 구조물의 손상탐지 (Damage Detection in Floating Structure Using Static Strain Data)

  • 박수용;전용환
    • 한국항해항만학회지
    • /
    • 제36권3호
    • /
    • pp.163-168
    • /
    • 2012
  • 최근 물 가까이에서 생활하고 여가를 보낼 수 있는 친수공간에 대한 욕구가 증가하면서 플로팅 구조물에 대한 관심이 커져가고 있다. 이에 본 연구에서는 정적 변형률을 이용한 플로팅 구조물의 손상탐지기법을 제안하였다. 손상을 탐지하기 위한 손상지수는 기존의 모달 변형에너지를 이용한 손상지수 법을 변형률을 적용할 수 있도록 확장하여 손상 전과 손상 후의 변형률로 나타내었으며, 손상지수 계산 후 손상부위를 결정하는 손상탐지는 패턴인식을 이용하였다. 제안된 이론의 정확성과 타당성은 플로팅 구조물의 축소모형을 제작하고 계측된 변형률 데이터에 적용하여 검증하였다.

An efficient method for structural damage localization based on the concepts of flexibility matrix and strain energy of a structure

  • Nobahari, Mehdi;Seyedpoor, Seyed Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.231-244
    • /
    • 2013
  • An efficient method is proposed here to identify multiple damage cases in structural systems using the concepts of flexibility matrix and strain energy of a structure. The flexibility matrix of the structure is accurately estimated from the first few mode shapes and natural frequencies. Then, the change of strain energy of a structural element, due to damage, evaluated by the columnar coefficients of the flexibility matrix is used to construct a damage indicator. This new indicator is named here as flexibility strain energy based index (FSEBI). In order to assess the performance of the proposed method for structural damage detection, two benchmark structures having a number of damage scenarios are considered. Numerical results demonstrate that the method can accurately locate the structural damage induced. It is also revealed that the magnitudes of the FSEBI depend on the damage severity.

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.

모달시험을 이용한 대형 구조물의 손상위치 파악 (A Study on the Damage Identification of Large Structure Using Modal Testing)

  • 정성진;최수현;진봉만
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.77-80
    • /
    • 2005
  • This paper presents a theoretical and experimental study on the damage identification of structures. In civil and aerospace, significant work has been done in the area of detecting damage in structures by using changes in the dynamic response of the structure. In this paper a method based on the changes in the strain energy of the structure will be discussed. To evaluate the effectiveness of the method it will be applied to both beam and LNG(liquefied natural gas) carrier.

  • PDF

Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy

  • Minshui Huang;Zhongzheng Ling;Chang Sun;Yongzhi Lei;Chunyan Xiang;Zihao Wan;Jianfeng Gu
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.715-730
    • /
    • 2023
  • Broad studies have addressed the issue of structural element damage identification, however, rubber bearing, as a key component of load transmission between the superstructure and substructure, is essential to the operational safety of a bridge, which should be paid more attention to its health condition. However, regarding the limitations of the traditional bearing damage detection methods as well as few studies have been conducted on this topic, in this paper, inspired by the model updating-based structural damage identification, a two-stage bearing damage identification method has been proposed. In the first stage, we deduce a novel bearing damage localization indicator, called element relative MSE, to accurately determine the bearing damage location. In the second one, the prior knowledge of bearing damage localization is combined with sailfish optimization (SFO) to perform the bearing damage estimation. In order to validate the feasibility, a numerical example of a 5-span continuous beam is introduced, also the noise robustness has been investigated. Meanwhile, the effectiveness and engineering applicability are further verified based on an experimental simply supported beam and actual engineering of the I-40 Bridge. The obtained results are good, which indicate that the proposed method is not only suitable for simple structures but also can accurately locate the bearing damage site and identify its severity for complex structure. To summarize, the proposed method provides a good guideline for the issue of bridge bearing detection, which could be used to reduce the difficulty of the traditional bearing failure detection approach, further saving labor costs and economic expenses.