• Title/Summary/Keyword: modal parameters of bridge

Search Result 95, Processing Time 0.022 seconds

Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation

  • Meng, Fanhao;Yu, Jingjun;Alaluf, David;Mokrani, Bilal;Preumont, Andre
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2019
  • This paper addresses the problem of damage detection in suspension bridge hangers, with an emphasis on the modal flexibility method. It aims at evaluating the capability and the accuracy of the modal flexibility method to detect and locate single and multiple damages in suspension bridge hangers, with different level of severity and various locations. The study is conducted numerically and experimentally on a laboratory suspension bridge mock-up. First, the covariance-driven stochastic subspace identification is used to extract the modal parameters of the bridge from experimental data, using only output measurements data from ambient vibration. Then, the method is demonstrated for several damage scenarios and compared against other classical methods, such as: Coordinate Modal Assurance Criterion (COMAC), Enhanced Coordinate Modal Assurance Criterion (ECOMAC), Mode Shape Curvature (MSC) and Modal Strain Energy (MSE). The paper demonstrates the relative merits and shortcomings of these methods which play a significant role in the damage detection ofsuspension bridges.

Periodic seismic performance evaluation of highway bridges using structural health monitoring system

  • Yi, Jin-Hak;Kim, Dookie;Feng, Maria Q.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.527-544
    • /
    • 2009
  • In this study, the periodic seismic performance evaluation scheme is proposed using a structural health monitoring system in terms of seismic fragility. An instrumented highway bridge is used to demonstrate the evaluation procedure involving (1) measuring ambient vibration of a bridge under general vehicle loadings, (2) identifying modal parameters from the measured acceleration data by applying output-only modal identification method, (3) updating a preliminary finite element model (obtained from structural design drawings) with the identified modal parameters using real-coded genetic algorithm, (4) analyzing nonlinear response time histories of the structure under earthquake excitations, and finally (5) developing fragility curves represented by a log-normal distribution function using maximum likelihood estimation. It is found that the seismic fragility of a highway bridge can be updated using extracted modal parameters and can also be monitored further by utilizing the instrumented structural health monitoring system.

Dynamic Experiments of the Incrementally Prestressed Concrete Girder Railway Bridge for Evaluation of Natural Frequencies and Damping Ratios (다단계 긴장 PSC 거더 철도교량의 고유진동수 및 감쇠비 평가를 위한 동적실험)

  • Kim, Sung-Il;Cho, Jae-Yeol;Yeo, In-Ho;Lee, Hee-Up;Bang, Choon-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.98-101
    • /
    • 2006
  • As an alternative of conventional prestressed concrete (PSC) girders, various types of PSC girders are being developed and applied in bridge structures. Incrementally prestressed concrete girder is one of these newly developed girders. According to design concept, these new types of PSC girders have considerable advantages to reduce their self-weight and make spans longer. However, dynamic interaction between bridge superstructures and passing trains would be sometimes one of critical issues in these more flexible railway bridges. Therefore, it is very important to evaluate modal parameters of newly designed bridges before conducting dynamic analyses. In the present paper, a 25 meters long full scale PSC girder was fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios at every prestressing stage. In the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied to obtain frequency response functions more exactly and the modal parameters are evaluated varying with construction stages. Prestressed force effects on changes of modal parameters are analyzed at every incremental prestressing stage.

  • PDF

Health monitoring of a bridge system using strong motion data

  • Mosalam, K.M.;Arici, Y.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.427-442
    • /
    • 2009
  • In this paper, the acceptability of system identification results for health monitoring of instrumented bridges is addressed. This is conducted by comparing the confidence intervals of identified modal parameters for a bridge in California, namely Truckee I80/Truckee river bridge, with the change of these parameters caused by several damage scenarios. A challenge to the accuracy of the identified modal parameters involves consequences regarding the damage detection and health monitoring, as some of the identified modal information is essentially not useable for acquiring a reliable damage diagnosis of the bridge system. Use of strong motion data has limitations that should not be ignored. The results and conclusions underline these limitations while presenting the opportunities offered by system identification using strong motion data for better understanding and monitoring the health of bridge systems.

Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.445-470
    • /
    • 2016
  • In this study, the Bayesian probabilistic framework is investigated for modal identification and modal identifiability based on the field measurements provided in the structural health monitoring benchmark problem of an instrumented cable-stayed bridge named Ting Kau Bridge (TKB). The comprehensive structural health monitoring system on the cable-stayed TKB has been operated for more than ten years and it is recognized as one of the best test-beds with readily available field measurements. The benchmark problem of the cable-stayed bridge is established to stimulate investigations on modal identifiability and the present paper addresses this benchmark problem from the Bayesian prospective. In contrast to deterministic approaches, an appealing feature of the Bayesian approach is that not only the optimal values of the modal parameters can be obtained but also the associated estimation uncertainty can be quantified in the form of probability distribution. The uncertainty quantification provides necessary information to evaluate the reliability of parametric identification results as well as modal identifiability. Herein, the Bayesian spectral density approach is conducted for output-only modal identification and the Bayesian model class selection approach is used to evaluate the significance of different modes in modal identification. Detailed analysis on the modal identification and modal identifiability based on the measurements of the bridge will be presented. Moreover, the advantages and potentials of Bayesian probabilistic framework on structural health monitoring will be discussed.

Experimental Evaluation of Modal Properties for Estimation of the Railway Bridge Dynamic Performance (철도교량 동적성능 평가를 위한 동특성 추출 실험연구)

  • Kim Sung-Il;Kim Nam-Sik;Lee Jung-Whee;Lee Pil-Goo
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.211-216
    • /
    • 2005
  • Resonance of railroad bridge can be broken out when natural frequency of the bridge coincides with exciting frequency of moving forces. In order to avoid aforementioned unpleasant response of the structure, exact determination of dynamic structural properties is important to understand dynamic behavior of the structure under moving train loads. In the present paper, a 25 meters long full scale IPC girder and 15m Precom girder models were fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios. In the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied to obtain frequency response functions more exactly and the modal parameters are evaluated varying with structural status.

  • PDF

Theoretical research on the identification method of bridge dynamic parameters using free decay response

  • Tan, Guo-Jin;Cheng, Yong-Chun;Liu, Han-Bing;Wang, Long-Lin
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • Input excitation and output response of structure are needed in conventional modal analysis methods. However, input excitation is often difficult to be obtained in the dynamic load test of bridge structures. Therefore, what attracts engineers' attention is how to get dynamic parameters from the output response. In this paper, a structural experimental modal analysis method is introduced, which can be used to conveniently obtain dynamic parameters of the structure from the free decay response. With known damping coefficients, this analysis method can be used to identify the natural frequencies and the mode shapes of MDOF structures. Based on the modal analysis theory, the mathematical relationship of damping ratio and frequency is obtained. By using this mathematical relationship to improve the previous method, an improved experimental modal analysis method is proposed in this paper. This improved method can overcome the deficiencies of the previous method, which can not identify damping ratios and requires damping coefficients in advance. Additionally, this improved method can also identify the natural frequencies, mode shapes and damping ratios of the bridge only from the free decay response, and ensure the stability of identification process by using modern mathematical means. Finally, the feasibility and effectiveness of this method are demonstrated by a numerical example of a simply supported reinforced concrete beam.

Damage Detection in Complex Structures using Pattern Recognition of Modal Sensitivity (모드민감도 패턴인식에 의한 복잡한 구조물의 손상발견)

  • 김정태;류연선;노리스스텁스
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.97-105
    • /
    • 1997
  • A methodology to identify a baseline modal model of a complicated 3-D structure using limited structural and modal information is experimentally examined. In the first part, a system's identification theory for the methodology to identify, baseline modal responses of the structure is outlined. Next, an algorithm is designed to build a generic finite element model of the baseline structure and to calibrate the model by using only a set of post-damage modal parameters. In the second part, the feasibility of the methodology is examined experimentally using a field-tested truss bridge far which only post-damaged modal responses were measured for a few vibration modes. For the complex 3-D bridge with many members, we analyzed to identify unknown stiffness parameters of the structure by using modal parameters of the initial two modes of vibration.

  • PDF

Experimental Modal Analysis and Damage Estimation of Bridge Model Using Vehicle Tests (모형교량의 모드특성 분석 및 차량시험에 의한 손상추정)

  • 이종원;이진학;심종민;윤정방;김재동
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.297-303
    • /
    • 2000
  • Damage estimation of a bridge structure is presented using ambient vibration data caused by the traffic loadings. The procedure consists of identification of the modal properties and assessment of the damage locations and severities. An experimental study is carried out on the bridge model subjected to vehicle loadings. Vertical accelerations of the bridge deck are measured at a limited number of locations. The modal parameters are identified from the free vibration signals extracted using the random decrement method. Then, the damage assessment is carried out based on the estimated modal parameters using the neural networks technique. The identified damage locations and severities agree reasonably well with the inflicted damages on the structure.

  • PDF

Automatic modal identification and variability in measured modal vectors of a cable-stayed bridge

  • Ni, Y.Q.;Fan, K.Q.;Zheng, G.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.123-139
    • /
    • 2005
  • An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm for identifying modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers permanently installed on the cable-stayed Ting Kau Bridge. With the continuously identified results, variability in modal vectors due to varying environmental conditions and measurement errors is observed. Such an observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring use.