• Title/Summary/Keyword: modal parameters

Search Result 737, Processing Time 0.024 seconds

A Study on Tire Radial Force Variation and Modal Testing (타이어 상하 힘변동과 모드 시험에 관한 연구)

  • Park, S.K.;Kim, J.K.;Song, S.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.55-59
    • /
    • 1998
  • This paper probes into the influence of tire uniformity on tire's modal parameters with the method of experimental modal analysis. Two radial tires of the same kind with different uniformity level are taken to be tested at different exciting points and real modal parameters are abstracted. The differences of their modal parameters are presented. Then tire transfer functions are constructed with experimental modal parameters and ideal modal parameters respectively. It is found that the measured transfer functions of tire of good uniformity are closer to ideal transfer function than that of tire of bad uniformity. The study shows evident interrelation of experimental modal parameters and tire uniformity, and further study should be of great value.

  • PDF

Modeling of Beam Structures from Modal Parameters (모달 파라미터를 이용한 보 구조물의 모델링)

  • Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF

Dynamic modeling of engine/mount system via experimental modal analysis (실험적 모우드해석을 통한 엔진 마운트계의 동역학적 모델링)

  • 정경렬;조치영;이종원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 1988
  • The analytical model of an engine mount system with six degrees of freedom is identified using the modal parameters obtained from the experimental modal analysis. The structural parameters, mass moment of inertia of the engine block and stiffness of the rubber mounts, of the engine mount system are determined by using the condition that the estimated model parameters should satisfy the corresponding eigenvalue problem. The simulated modal parameters of the identified analytical model are in good agreement with the measured modal parameters.

  • PDF

Application Studies on Structural Modal Identification Toolsuite for Seismic Response of Shear Frame Structure (SMIT를 활용한 지진하중을 받는 전단 구조물의 응답모드 특성에 관한 연구)

  • Chang, Minwoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.201-210
    • /
    • 2018
  • The improvement in computing systems and sensor technologies devotes to conduct data-driven structural health monitoring algorithms for existing civil infrastructures. Despite of the development of techniques, the uncertainty oriented from the measurement results in the discrepancy to the actual structural parameters and let engineers or decision makers hesitate to adopt such techniques. Many studies have shown that the modal identification results can be affected by the uncertainties due to the applied methods and the types of loading. This paper aims to compare the performance of modal identification methods using Structural Modal Identification Toolsuite (SMIT) which has been developed to facilitate multiple identification methods with a user-friendly designed platform. The data fed into SMIT processes three stages for the comprehensive identification including preprocessing, eigenvalue estimation, and post-processing. The seismic and white noise response for shear frame model was obtained from numerical simulation. The identified modal parameters is compared to the actual modal parameters. In order to improve the quality of coherence in identified modal parameters, several hurdles including modal phase collinearity and extended modal amplitude coherence were introduced. Numerical simulation conducted on the 5 dof shear frame model were used to validate the effectiveness of using these parameters.

Uncertainty in Operational Modal Analysis of Hydraulic Turbine Components

  • Gagnon, Martin;Tahan, S.-Antoine;Coutu, Andre
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.278-285
    • /
    • 2009
  • Operational modal analysis (OMA) allows modal parameters, such as natural frequencies and damping, to be estimated solely from data collected during operation. However, a main shortcoming of these methods resides in the evaluation of the accuracy of the results. This paper will explore the uncertainty and possible variations in the estimates of modal parameters for different operating conditions. Two algorithms based on the Least Square Complex Exponential (LSCE) method will be used to estimate the modal parameters. The uncertainties will be calculated using a Monte-Carlo approach with the hypothesis of constant modal parameters at a given operating condition. In collaboration with Andritz-Hydro Ltd, data collected on two different stay vanes from an Andritz-Hydro Ltd Francis turbine will be used. This paper will present an overview of the procedure and the results obtained.

Bridge modal identification based on frequency variation caused by a parked vehicle

  • He, Wen-Yu;Ren, Wei-Xin;Wang, Quan;Wang, Zuo-Cai
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.413-421
    • /
    • 2022
  • Modal parameters are the main dynamic characteristics of bridge. This study aims to propose an innovative route to estimate the modal parameters for bridges by using a parked vehicle in which mode shapes with high accuracy and spatial resolution are identified by frequency measurement. Based on the theory of dynamic modification and modal identification, the mathematical formulation between the parked mass induced frequency variation and the modal parameters of a bridge is derived. Then this mathematical formulation is extended to a parked vehicle-bridge system. The arithmetic and processes for estimating the modal parameters based on the identified frequency variation of the vehicle-bridge systems when the vehicle locates at sequentially arranged positions are presented. Finally the proposed method is applied to several simulated bridges of different types. The results indicate that it can estimate the modal parameters with high accuracy and efficiency.

Analysis of thermal and damage effects over structural modal parameters

  • Ortiz Morales, Fabricio A.;Cury, Alexandre A.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Structural modal parameters i.e. natural frequencies, damping ratios and mode shapes are dynamic features obtained either by measuring the vibration responses of a structure or by means of finite elements models. Over the past two decades, modal parameters have been used to detect damage in structures by observing its variations over time. However, such variations can also be caused by environmental factors such as humidity, wind and, more importantly, temperature. In so doing, the use of modal parameters as damage indicators can be seriously compromised if these effects are not properly tackled. Many researchers around the world have found numerous methods to mitigate the influence of such environmental factors from modal parameters and many advanced damage indicators have been developed and proposed to improve the reliability of structural health monitoring. In this paper, several vibration tests are performed on a simply supported steel beam subjected to different damage scenarios and temperature conditions, aiming to describe the variation in modal parameters due to temperature changes. Moreover, four statistical methodologies are proposed to identify damage. Results show a slightly linear decrease in the modal parameters due to temperature increase, although it is not possible to establish an empirical equation to describe this tendency.

Effect of boundary conditions on modal parameters of the Run Yang Suspension Bridge

  • Li, Zhijun;Li, Aiqun;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.905-920
    • /
    • 2010
  • Changes in temperature, loads and boundary conditions may have effects on the dynamic properties of large civil structures. Taking the Run Yang Suspension Bridge as an example, modal properties obtained from ambient vibration tests and from the structural health monitoring system of the bridge are used to identify and evaluate the modal parameter variability. Comparisons of these modal parameters reveal that several low-order modes experience a significant change in frequency from the completion of the bridge to its operation. However, the correlation analysis between measured modal parameters and the temperature shows that temperature has a slight influence on the low-order modal frequencies. Therefore, this paper focuses on the effects of the boundary conditions on the dynamic behaviors of the suspension bridge. An analytical model is proposed to perform a sensitivity analysis on modal parameters of the bridge concerning the stiffness of expansion joints located at two ends of bridge girders. It is concluded that the boundary conditions have a significant influence on the low-order modal parameters of the suspension bridge. In addition, the influence of vehicle load on modal parameters is also investigated based on the proposed model.

Assessment of modal parameters considering measurement and modeling errors

  • Huang, Qindan;Gardoni, Paolo;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.717-733
    • /
    • 2015
  • Modal parameters of a structure are commonly used quantities for system identification and damage detection. With a limited number of studies on the statistics assessment of modal parameters, this paper presents procedures to properly account for the uncertainties present in the process of extracting modal parameters. Particularly, this paper focuses on how to deal with the measurement error in an ambient vibration test and the modeling error resulting from a modal parameter extraction process. A bootstrap approach is adopted, when an ensemble of a limited number of noised time-history response recordings is available. To estimate the modeling error associated with the extraction process, a model prediction expansion approach is adopted where the modeling error is considered as an "adjustment" to the prediction obtained from the extraction process. The proposed procedures can be further incorporated into the probabilistic analysis of applications where the modal parameters are used. This study considers the effects of the measurement and modeling errors and can provide guidance in allocating resources to improve the estimation accuracy of the modal data. As an illustration, the proposed procedures are applied to extract the modal data of a damaged beam, and the extracted modal data are used to detect potential damage locations using a damage detection method. It is shown that the variability in the modal parameters can be considered to be quite low due to the measurement and modeling errors; however, this low variability has a significant impact on the damage detection results for the studied beam.

Constructing Equations of Motion for a Dynamic System from Modal Parameters (모달 파라미터를 이용한 동적 시스템의 운동 방정식 구성)

  • Hwang, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The numerical verifications for the simple mass-spring-damper system and the cantilevered beam prove the efficiency and accuracy of the present method.