• Title/Summary/Keyword: modal mode

Search Result 1,178, Processing Time 0.03 seconds

Plate Spring Design of a Micro Actuator Using Topology-parameter Optimization (위상-치수 최적화에 의한 마이크로 구동기 판 스프링의 설계)

  • Lee, Jong-Jin;Lee, Ho-Cheol;Yoo, Jeong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1246-1253
    • /
    • 2007
  • The recent issue of optical pickup actuators is to apply optical storage devices to mobile devices such as a cellular phone and PDA. It requires actuators to become smaller than conventional types. As the size becomes smaller, the magnetic force is reduced and the assembly of optical pickup actuators becomes more difficult. In addition, its dynamic characteristics are changed. In this paper, methods to improve magnetic forces and dynamic characteristics are suggested and the optimal result of the plate spring design is obtained. A diamond shape magnet and the fine pattern coil (FPC) are used to improve magnetic forces and damping elements are attached to decrease the peak magnitude of the mode instead of using structural damping, mostly for the purpose of improving the accuracy of the finite element simulation. To get more stable dynamic characteristics than conventional ones, a plate spring is applied to the optical pickup actuator and it is optimized with topology and parameter optimization to obtain the concept and the detail design, respectively.

A Study on the Aluminum Wire Bondingby Using Ultrasonic Vibrator (초음파 진동자를 이용한 알루미늄 와이어 용접에 관한 연구)

  • 김희수;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.571-576
    • /
    • 1994
  • In recent years, ultrasonic has been widely applied in measurement and industrial fields and its application range has been expanded as a result of continuous research and development. Wire Bonding Machine, an instrument fabricating semi-conductor, makes use of ultrasonic bonding method. In order to improve the currently used wire bonding machine using ultrasonic energy, technical accumulation is needed steadily through development of exciting device of ultrasonic composed of piezoelectic vibrator and horn. This study investigates the design conditions affecting the dynamic characteristics through the theoretical and experimental analysis of piezoelectric vibrator and horn, The study conducts separately the system identification of piezoelectric vibrator in time domain and the modal analysis of horn in frequency domain. In theoretical model, the integrated modeling is conducted via a combination of dynamic identification of piezoelectric vibrator and theoretical analysis of horn. Hence comparison is made for theoretical and experimental results of the dynamic characteristics of the ultrasonic transducer composed of piezoelectric vibrator and horn. Form the results of this study we develop the design technique of ultrasonic transducer using dynamic characteristic analysis and propose the possibility of ultrasonic welding considering the optimal condition of the natural frequency and vibration mode of horn.

  • PDF

Motion Control of Non-Contact Start/stop Hard Disk Drive Using Shape Memory Alloy Actuator (형상기억합금 작동기를 이용한 비접촉 시동 및 정지형 하드디스크 드라이브의 운동제어)

  • Im, Su-Cheol;Park, Jong-Seong;Choe, Seung-Bok;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.196-202
    • /
    • 2002
  • In this work, we propose a new type of HDD suspension featuring shape memory alloy (SMA) actuator in order to prevent the contact between the slider and disk. The principal design parameters are obtained from the modal analysis using finite element analysis, and then the dynamic model is established to formulate the control scheme for Non-Contact Start/stop mode drive. Subsequently, a robust H$\_$$\infty$/ control algorithm is designed by integrating experimentally-Obtained SMA actuator dynamics to the proposed HDD suspension system. The controller is empirically realized and control results for the load/unload profiles are presented in time domain. In addition, the contact signal between the slider and disk is measured by the electrical resistance method.

A Test Procedure for Road Noise Evaluation (승용차의 도로면 소음 평가를 위한 시험절차 고찰)

  • 조영호;고강호;허승진;국형석;김찬묵;기지현;최윤봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.980-985
    • /
    • 2002
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual loading and find noise sources very easily. finally, the transfer function analysis is used to identify noise paths through the chassis system. However, all of the tests above mentioned must be performed to evaluate road booming noise. The objectives and the procedures of the tests are described in this paper. Also, the guideline for efficient road noise evaluation test can be found.

  • PDF

A Study on Vibration Characteristics of Moisture Separator for APR1400 Steam Generator (APR1400 증기발생기 습분분리기 진동 특성에 관한 연구)

  • Cho, Minki;Park, Taejung;Ha, Changhoon;Park, Luke
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.99-101
    • /
    • 2014
  • A Comprehensive Vibration Assessment Program (CVAP) for steam generator internals (SGI) of Advanced Power Reactor 1400 (APR1400) is being performed in accordance with the United States Nuclear Regulatory Commission (U.S. NRC) Regulatory Guide 1.20 (RG 1.20) revision 3. This paper studies the vibration characteristics of moisture separator assembly as part of the vibration and stress analysis program for APR1400 SGI CVAP. The natural frequencies, mode shapes, and structural behavior of moisture separator assembly were investigated through modal analysis using finite element method and experimental measurement. Since the moisture separator consists of several items with complicated shape, an idealized shell model was used in the finite element analysis. Group of local modes caused by moisture separators and significant modes of shroud and separator support plate were identified. The results of this paper are to be utilized in the structural response analysis of moisture separator assembly.

  • PDF

Dynamic Characteristics Identification of Cylindrical Structure Using Dynamic Substructuring Method (Dynamic Substructuring 기법을 이용한 원통형 구조물의 동특성 확인)

  • Choi, Youngin;Park, No-Cheol;Lee, Sang-Jeong;Park, Young-Pil;Kim, Jinsung;Park, Chanil;Roh, Woo-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.106-109
    • /
    • 2014
  • In order to obtain dynamic behaviors of complex structures, it demands large amounts computational cost and time to perform the numerical analysis. The model reduction method helps these problems by dividing the full model into primary and unnecessary parts. In this research, we perform the modal analysis using the dynamic substructuring method, which is one of the model reduction methods, in order to obtain the dynamic characteristics of the cylindrical structures efficiently. To select the master degrees of freedom (dofs), we consider the mode shapes of the cylindrical structures. And then, we identify the validity of the dynamic substructuring method by applying the method to the simple cylinder and core support barrel (CSB) which is one of the reactor internals with the cylindrical shape. The results demonstrate that the dynamic characteristics from the dynamic substructuring method are well matched with the original method.

  • PDF

Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads

  • Di Paola, M.;Muscolino, G.;Sofi, A.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.107-130
    • /
    • 2004
  • This paper presents a time-domain approach for analyzing nonlinear random vibrations of long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial correlation are properly included by modeling wind velocity fluctuation as a random function of time and of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D) random field. Within the context of a Galerkin's discretization of the equations governing cable motion, a very efficient Monte Carlo-based technique for second-order analysis of the response is proposed. This procedure starts by generating sample functions of the generalized aerodynamic loads by using the spectral decomposition of the cross-power spectral density function of wind turbulence field. Relying on the physical meaning of both the spectral properties of wind velocity fluctuation and the mode shapes of the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation procedure according to which just the first few significant loading and structural modal contributions are retained.

Comparative Study on Rail Freight Policies of Various Countries (철도화물수송 지원정책 국제비교 연구)

  • Kim, Young-Joo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.685-697
    • /
    • 2016
  • Railroad is considered as an eco-friendly transportation mode because it emits lower greenhouse gases and air pollutants and consumes less energy compared to trucking. To promote rail freight, many countries have implemented various policies, while South Korea has implemented few substantial policies. This study aims to compare and analyze rail freight policies of various countries in order to suggest policy implications to South Korea. We analyze relevant policies of 9 countries; these are classified into 5 categories, and we provide policy implications for facilitating rail freight infrastructure and equipments, grants for the transportation cost using freight rail, and road freight restriction policy.

Structural damage identification of plates based on modal data using 2D discrete wavelet transform

  • Bagheri, A.;Ghodrati Amiri, G.;Khorasani, M.;Bakhshi, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.13-28
    • /
    • 2011
  • An effective method for detection linear flaws in plate structures via two-dimensional discrete wavelet transform is proposed in this study. The proposed method was applied to a four-fixed supported rectangular plate containing damage with arbitrary length, depth and location. Numerical results identifying the damage location are compared with the actual results to demonstrate the effectiveness of the proposed method. Also, a wavelet-based method presented for de-noising of mode shape of plate. Finally, the performance of the proposed method for de-noising and damage identification was verified using experimental data. Comparison between the location detected by the proposed method, and the plate's actual damage location revealed that the methodology can be used as an accessible and effective technique for damage identification of actual plate structures.

Frequency variation in construction stages and model validation for steel buildings

  • Aras, Fuat
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.647-662
    • /
    • 2016
  • This study aims to monitor the variation of modal frequencies of steel buildings during their construction sequence. In this respect, construction of a steel building is followed by vibration based measurements. The monitored building is a three-story educational building within a building group whose structural system consists of steel moment resisting steel frames and eccentric braces. Five different acceleration measurements in two perpendicular directions are taken on five different construction stages, starting from the erection of the columns and beams ending with the completion of the construction. The recorded measurements are transferred into frequency domain and the dominant frequencies for each case have been determined. The change in the dominant frequencies is evaluated with the existing construction stages and performed constructional works between the stages. The last measurement, performed on the building in service, revealed the first two dominant frequencies as mutual in X and Y direction, showing that these dynamic modes are torsional modes. This result is investigated by numerical analysis performed with finite element model of the building constructed for design purpose. Lower frequencies and different mode shapes are determined from numerical analysis. The reason of lower frequencies is discussed and the vibration survey is extended to determine the effects of an adjacent building. The results showed that the building is in strong relation with an adjoining building in spite of a designed construction joint.