• Title/Summary/Keyword: modal energy

Search Result 396, Processing Time 0.025 seconds

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Benjeddou, Ayech
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.275-302
    • /
    • 2015
  • Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.

Damage Detection in a Beam Structure Using Modal Strain Energy (빔 구조물의 모달 변형에너지를 이용한 손상탐지)

  • 박수용;최상현
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.333-342
    • /
    • 2003
  • The objective of this paper is to present an algorithm to locate and size damage in a beam structure. The method uses the changes in the modal strain energy distribution. A damage index, utilized to identify possible location and corresponding severity of local damage, is formulated and expressed in terms of modal displacements that can be obtained from mode shapes of the undamaged and the damaged structures. The possible damage locations in the structure arc determined by the application of damage indicator according to previously developed decision rules. The robustness and effectiveness of the method arc demonstrated using numerical examples of beam structures with simulated damage.

Analysis of building frames with viscoelastic dampers under base excitation

  • Shukla, A.K.;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.71-87
    • /
    • 2001
  • A frequency domain response analysis is presented for building frames passively controlled by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an approximate modal strain energy method, which uses an equivalent modal damping of the system in each mode of vibration, and (iii) an exact method which uses complex frequency response function of the system. The responses obtained by three different methods are compared for different combinations of viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and in understanding the implication of using modal analysis procedure for building frames which are passively controlled by viscoelastic dampers against base excitation.

Analysis of Experimental Modal Properties of an Electric Cabinet via a Forced Vibration Test Using a Shaker (가진기를 이용한 강제진동시험에 의한 전기 캐비닛의 실험적 모드특성 분석)

  • Cho, Sung-Gook;So, Gi-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.11-18
    • /
    • 2011
  • Accurate modal identification analysis is required to reasonably perform a seismic qualification of safety-related electric equipment installed in nuclear power plants (NPPs). This study evaluates a variation of the modal properties of an electric equipment cabinet structure in NPPs according to the excitation levels. For the study, an actual electric equipment cabinet was selected as a specimen and was dynamically tested by using a portable exciter in accordance with the level of input vibration energy. Tests were classified into two sets: with-door cases, and without-door cases. Frequency response functions were computed from the signals of the acceleration responses and input motions measured from the vibration tests. A polynomial curve fitting algorithm was used to extract the modal properties from the frequency response functions. This study reviews the variation of the modal properties according to the variation of the excitation levels. The results of the study show that the modal frequencies and the modal dampings of the object specimen varies nonlinearly according to the excitation level of the test motion. Attaching the door increases the modal damping of the cabinet.

The random structural response due to a turbulent boundary layer excitation

  • De Rosa, S.;Franco, F.;Romano, G.;Scaramuzzino, F.
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.437-450
    • /
    • 2003
  • In this paper, the structural random response due to the turbulent boundary layer excitation is investigated. Using the mode shapes and natural frequencies of an undamped structural operator, a fully analytical model has been assembled. The auto and cross-spectral densities of kinematic quantities are so determined through exact analytical expansions. In order to reduce the computational costs associated with the needed number of modes, it has been tested an innovative methodology based on a scaling procedure. In fact, by using a reduced spatial domain and defining accordingly an augmented artificial damping, it is possible to get the same energy response with reduced computational costs. The item to be checked was the power spectral density of the displacement response for a flexural simply supported beam; the very simple structure was selected just to highlight the main characteristics of the technique. In principle, it can be applied successfully to any quantity derived from the modal operators. The criterion and the rule of scaling the domain are also presented, investigated and discussed. The obtained results are encouraging and they allow thinking successfully to the definition of procedure that could represent a bridge between modal and energy methods.

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

Analysis of a Building Structure with Added Viscoelastic Dampers

  • Lee, Dong-Guen;Hong, Sung-Il;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.27-35
    • /
    • 1998
  • Steel structures with added viscoelastic dampers are analysed to investigat their behavior under earthquake excitation. The direct integration method, which produces exact solution for the non-proportional or non-classical damping system, is used throughout the analysis. The results from modal strain energy method are also provided for comparison. Then a new analytical a, pp.oach, based on the rigid floor diaphragm assumption and matrix condensation technique, is introduced, and the results are compared with those obtained from direct integration method and modal strain energy method. The well known phenomenon, that the effectiveness of the viscoelastic dampers depends greatly on the location of the dampers, is once again confirmed in the analysis. It is also found that the modal strain energy method generaly underestimates the responses obtained from the direct integration method, especially when the dampers are placed in only a part of the building. The proposed method turns out to be very efficient with considerable saving in computation this and reasonably accurate considering the reduced degrees of freedom.

  • PDF

Structural damage identification based on genetically trained ANNs in beams

  • Li, Peng-Hui;Zhu, Hong-Ping;Luo, Hui;Weng, Shun
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.227-244
    • /
    • 2015
  • This study develops a two stage procedure to identify the structural damage based on the optimized artificial neural networks. Initially, the modal strain energy index (MSEI) is established to extract the damaged elements and to reduce the computational time. Then the genetic algorithm (GA) and artificial neural networks (ANNs) are combined to detect the damage severity. The input of the network is modal strain energy index and the output is the flexural stiffness of the beam elements. The principal component analysis (PCA) is utilized to reduce the input variants of the neural network. By using the genetic algorithm to optimize the parameters, the ANNs can significantly improve the accuracy and convergence of the damage identification. The influence of noise on damage identification results is also studied. The simulation and experiment on beam structures shows that the adaptive parameter selection neural network can identify the damage location and severity of beam structures with high accuracy.

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

Design of Modal Transducer in 2D Structure Using Multi-Layered PVDF Films Based on Electrode Pattern Optimization (다층 압전 필름의 전극 패턴 최적화를 통한 2차원 구조물에서의 모달 변환기 구현)

  • 유정규;김지철;김승조
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.632-642
    • /
    • 1998
  • A method based on finite element discretization is developed for optimizing the polarization profile of PVDF film to create the modal transducer for specific modes. Using this concept, one can design the modal transducer in two-dimensional structure having arbitrary geometry and boundary conditions. As a practical means for implementing this polarization profile without repoling the PVDF film the polarization profile is approximated by optimizing electrode patterns, lamination angles, and poling directions of the multi-layered PVDF transducer. This corresponds to the approximation of a continuous function using discrete values. The electrode pattern of each PVDF layer is optimized by deciding the electrode of each finite element to be used or not. Genetic algorithm, suitable for discrete problems, is used as an optimization scheme. For the optimization of each layers lamination angle, the continuous lamination angle is encoded into discrete value using binary 5 bit string. For the experimental demonstration, a modal sensor for first and second modes of cantilevered composite plate is designed using two layers of PVDF films. The actuator is designed based on the criterion of minimizing the system energy in the control modes under a given initial condition. Experimental results show that the signals from residual modes are successfully reduced using the optimized multi-layered PVDF sensor. Using discrete LQG control law, the modal peaks of first and second modes are reduced in the amount of 12 dB and 4 dB, resepctively.

  • PDF