• 제목/요약/키워드: modal decomposition

검색결과 136건 처리시간 0.027초

Experimental validation of a multi-level damage localization technique with distributed computation

  • Yan, Guirong;Guo, Weijun;Dyke, Shirley J.;Hackmann, Gregory;Lu, Chenyang
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.561-578
    • /
    • 2010
  • This study proposes a multi-level damage localization strategy to achieve an effective damage detection system for civil infrastructure systems based on wireless sensors. The proposed system is designed for use of distributed computation in a wireless sensor network (WSN). Modal identification is achieved using the frequency-domain decomposition (FDD) method and the peak-picking technique. The ASH (angle-between-string-and-horizon) and AS (axial strain) flexibility-based methods are employed for identifying and localizing damage. Fundamentally, the multi-level damage localization strategy does not activate all of the sensor nodes in the network at once. Instead, relatively few sensors are used to perform coarse-grained damage localization; if damage is detected, only those sensors in the potentially damaged regions are incrementally added to the network to perform finer-grained damage localization. In this way, many nodes are able to remain asleep for part or all of the multi-level interrogations, and thus the total energy cost is reduced considerably. In addition, a novel distributed computing strategy is also proposed to reduce the energy consumed in a sensor node, which distributes modal identification and damage detection tasks across a WSN and only allows small amount of useful intermediate results to be transmitted wirelessly. Computations are first performed on each leaf node independently, and the aggregated information is transmitted to one cluster head in each cluster. A second stage of computations are performed on each cluster head, and the identified operational deflection shapes and natural frequencies are transmitted to the base station of the WSN. The damage indicators are extracted at the base station. The proposed strategy yields a WSN-based SHM system which can effectively and automatically identify and localize damage, and is efficient in energy usage. The proposed strategy is validated using two illustrative numerical simulations and experimental validation is performed using a cantilevered beam.

정합장 기반 표적 위치추정 시 모드공간 분석을 통한 간섭 신호 제거 기법 (Matched Field Source Localization and Interference Suppression Using Mode Space Estimation)

  • 김경섭;성우제;표상우
    • 한국음향학회지
    • /
    • 제27권1호
    • /
    • pp.40-46
    • /
    • 2008
  • 천해 영역에서 선박과 같은 수상 소음원의 간섭 신호는 정합장처리를 이용한 수중 표적 탐지 및 위치추정 기법 적용에 있어 문제점으로 남아있다. 정지 음원의 경우 수신기공간의 음장에 대한 고유벡터분해를 통해 각 음원 성분을 분리하고 간섭 신호 성분을 제거할 수 있다. 하지만 일반적인 이동 음원 환경에서는 각 신호 성분의 에너지가 수신 음장의 부분공간에 퍼지게 되므로, 고유값 분포 비교만으로 각 신호 성분을 구별하기 어렵게 되거나 하나의 고유벡터에 각 신호성분이 섞이는 경우도 발생한다. 본 논문에서는 수상 음원과 수중 음원 신호의 물리적 특성 차이를 이용한 모드공간 간섭 신호 제거 기법을 제안하였다. 이 기법은 모드-공분산행렬에 대한 고유벡터분해를 통해 간섭 신호 성분을 판별하며, 이 성분들을 부분공간에서 제거함으로써 차폐되었던 표적 신호를 복원하고 위치추정을 가능하게 한다. 이를 모의실험을 통해 확인하고 결과에 대해 논의하였다.

진동수준이 원자력발전소 전기 캐비닛의 동특성에 미치는 영향 (Effects of the Excitation Level on the Dynamic Characteristics of Electrical Cabinets of Nuclear Power Plants)

  • 조성국;김두기;고성혁
    • 한국지진공학회논문집
    • /
    • 제14권3호
    • /
    • pp.23-30
    • /
    • 2010
  • 원자력발전소에 설치되는 안전관련 캐비닛형 전기기기는 설치 전에 내진검증이 요구된다. 전기기기의 동특성분석은 내진 검증에 포함된 중요한 과정이며, 기기의 정확한 해석모델을 작성하기 위해서도 필수적으로 요구되는 업무이다. 이 연구에서는 입력진동수준에 따른 기기의 동특성 변화를 분석하기 위하여 원전 지진감시시스템 캐비닛을 대상으로 진동대시험을 수행하고, 입력진동운동의 수준별로 계측된 진동응답신호를 진동수영역분해법으로 분석하였다. 분석결과, 대상기기는 입력진동수준의 크기에 따라 동특성이 비선형적으로 변화하고, 국내 원전의 안전정지지진 수준 이하의 진동에서도 동특성이 비선형적 거동을 보이고 있음을 확인하였다. 이러한 입력진동 수준에 따라 전기기기의 동특성이 비선형적으로 변하는 원인은 대상기기의 특성과 입력진동수준을 고려할 때 일반적인 재료 비선형보다는 각 부품들의 마찰력과 기하학적인 비선형성에 기인하는 것으로 판단된다. 따라서 전기 캐비닛의 입력진동수준에 따른 동특성의 비선형적 변화는 향후 안전관련 기기의 내진검증 업무에서 중요하게 검토되어야 할 것으로 판단된다.

Spurious mode distinguish by eigensystem realization algorithm with improved stabilization diagram

  • Qu, Chun-Xu;Yi, Ting-Hua;Yang, Xiao-Mei;Li, Hong-Nan
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.743-750
    • /
    • 2017
  • Modal parameter identification plays a key role in the structural health monitoring (SHM) for civil engineering. Eigensystem realization algorithm (ERA) is one of the most popular identification methods. However, the complex environment around civil structures can introduce the noises into the measurement from SHM system. The spurious modes would be generated due to the noises during ERA process, which are usually ignored and be recognized as physical modes. This paper proposes an improved stabilization diagram method in ERA to distinguish the spurious modes. First, it is proved that the ERA can be performed by any two Hankel matrices with one time step shift. The effect of noises on the eigenvalues of structure is illustrated when the choice of two Hankel matrices with one time step shift is different. Then, a moving data diagram is proposed to combine the traditional stabilization diagram to form the improved stabilization diagram method. The moving data diagram shows the mode variation along the different choice of Hankel matrices, which indicates whether the mode is spurious or not. The traditional stabilization diagram helps to determine the concerned truncated order before moving data diagram is implemented. Finally, the proposed method is proved through a numerical example. The results show that the proposed method can distinguish the spurious modes.

Fault Location and Classification of Combined Transmission System: Economical and Accurate Statistic Programming Framework

  • Tavalaei, Jalal;Habibuddin, Mohd Hafiz;Khairuddin, Azhar;Mohd Zin, Abdullah Asuhaimi
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2106-2117
    • /
    • 2017
  • An effective statistical feature extraction approach of data sampling of fault in the combined transmission system is presented in this paper. The proposed algorithm leads to high accuracy at minimum cost to predict fault location and fault type classification. This algorithm requires impedance measurement data from one end of the transmission line. Modal decomposition is used to extract positive sequence impedance. Then, the fault signal is decomposed by using discrete wavelet transform. Statistical sampling is used to extract appropriate fault features as benchmark of decomposed signal to train classifier. Support Vector Machine (SVM) is used to illustrate the performance of statistical sampling performance. The overall time of sampling is not exceeding 1 1/4 cycles, taking into account the interval time. The proposed method takes two steps of sampling. The first step takes 3/4 cycle of during-fault and the second step takes 1/4 cycle of post fault impedance. The interval time between the two steps is assumed to be 1/4 cycle. Extensive studies using MATLAB software show accurate fault location estimation and fault type classification of the proposed method. The classifier result is presented and compared with well-established travelling wave methods and the performance of the algorithms are analyzed and discussed.

유성(儒城) 서북부(西北部) 우산봉(雨傘峰) 일대(一帶)에 분포(分布)하는 화강암(花崗巖) 복합체(複合體)의 암석학적(岩石學的) 연구(硏究) (Petrology of Granitic Complex Distributed in the Woosanbong area, northwestern part of Yuseong)

  • 김승호;이대성
    • 자원환경지질
    • /
    • 제14권3호
    • /
    • pp.123-142
    • /
    • 1981
  • Granitic complex in the Woosanbong area is composed of schistose granite, two-mica granite, biotite granite, porphyritic granite and pink feldspar granite in order of intrusion. In their boundary aspects, the gradational change between porphyritic granite and pink feldspar granite is observed in field relations. All the granites of the complex are classified to quartz monzonite by the modal compositions following Bateman's classification (1961) with the exception of pink feldspar granite which belongs to granite according to the petrographical classification. The first three granites are characterized by highly development of vein and/or lens-like pegmatites in their bodies, and two others contain green hornblende uniquely. These leucocratic two-mica granite shows an unusual character in ratio of muscovite to biotite 1: 0.7 to 1:13, and contains dominantly microcline. The content of muscovite varies in places in the field. Under the polarizing microscope it is revealed that the muscovite flakes occur as the products altered from biotite partly or completely, and it usually associates with chlorite flakes nearby. These features, therefore, suggests that biotite probably has been altered to muscovite and chlorite by hydration during deuteric processes. At the same stage, sericitization of plagioclase by the hydrolytic decomposition, and transformation of orthoclase to microcline may be taken place. Accordingly, it is obviously permissible to consider the two-mica granite as a kind of 'apo-granite' by deuteric alterations during the consolidation of magma.

  • PDF

Monitoring of wind turbine blades for flutter instability

  • Chen, Bei;Hua, Xu G.;Zhang, Zi L.;Basu, Biswajit;Nielsen, Soren R.K.
    • Structural Monitoring and Maintenance
    • /
    • 제4권2호
    • /
    • pp.115-131
    • /
    • 2017
  • Classical flutter of wind turbine blades indicates a type of aeroelastic instability with fully attached boundary layer where a torsional blade mode couples to a flapwise bending mode, resulting in a mutual rapid growth of the amplitudes. In this paper the monitoring problem of onset of flutter is investigated from a detection point of view. The criterion is stated in terms of the exceeding of a defined envelope process of a specific maximum torsional vibration threshold. At a certain instant of time, a limited part of the previously measured torsional vibration signal at the tip of blade is decomposed through the Empirical Mode Decomposition (EMD) method, and the 1st Intrinsic Mode Function (IMF) is assumed to represent the response in the flutter mode. Next, an envelope time series of the indicated modal response is obtained in terms of a Hilbert transform. Finally, a flutter onset criterion is proposed, based on the indicated envelope process. The proposed online flutter monitoring method provided a practical and direct way to detect onset of flutter during operation. The algorithm has been illustrated by a 907-DOFs aeroelastic model for wind turbines, where the tower and the drive train is modelled by 7 DOFs, and each blade by means of 50 3-D Bernoulli-Euler beam elements.

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

Grouping effect on the seismic response of cabinet facility considering primary-secondary structure interaction

  • Salman, Kashif;Tran, Thanh-Tuan;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1318-1326
    • /
    • 2020
  • Structural modification in the electrical cabinet is investigated by a proposed procedure that comprises of an experimental, analytical and numerical solution. This research emphasizes the linear dynamic analysis of the cabinet that is studied under the seismic excitation to demonstrate the real behavior of the cabinets in NPP. To this end, an actual electric cabinet is experimentally tested using an impact hammer test which reveals the fundamental parameters of the cabinet. The Frequency-domain decomposition (FDD) method is used to extract the dynamic properties of the cabinet from the experiment which is then used for numerical modeling. To validate the dynamic properties of the cabinet an analytical solution is suggested. The calibrated model is analyzed under the floor response obtained from the Connecticut nuclear power plant structure excited by Tabas 1978 (Mw 7.4) earthquake. Eventually, the grouping effect of the cabinets is proposed which represents the influence on the dynamic modification. This grouping of the cabinets is described more sophisticatedly by the theoretical understating, which results in a significant change in the seismic response. Considering the grouping effects will be helpful in the assessment of the real seismic behavior, design, and performance of cabinets.