• Title/Summary/Keyword: mock-up 테스트

Search Result 10, Processing Time 0.03 seconds

A study on the improvement of The standard specifications for Mock-up Test in the Curtain-wall construction (Curtain-wall공사에 있어서 Mock-up Test 건축공사표준시방서의 개선 방안에 관한 연구)

  • Lee Jin-Man;Kang Jae-Wang;Son Yong-Geun;Kim Chang-Duk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.491-494
    • /
    • 2003
  • Curtain wall (for the outside wall) must be designed and constructed to resist weather condition of nature like rain. wind and surrounding environment. So, Now days, Mock-up test of curtain wall's total capability is generally used for skycraft building. But, Mock-up test specification in korea is so weak that there are lots of disputation. Also, lacking of clearness in specification causes many trouble in adaptation. Therefore, I would like to consider the problem of Mock-up test specification by inspecting and comparing with other country's works. and I will mention the way of approvement in our specification.

  • PDF

A Study on the Problem Analysis and Quality Improvement in Fabricating Free-Form Buildings Facade Panels through Mock-up Panels Production (Mock-up 부재제작을 통한 비정형 건축 외장부재의 제작 문제점 분석 및 개선방안에 관한 연구)

  • Kwen, Soon-Ho;Shim, Hyoun-Woo;Ock, Jong-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.11-21
    • /
    • 2011
  • The most critical issue in free-form buildings is how to construct the free-formed exterior facade panels. Their geometric complexity delivers many cons and problems in fabricating and constructing their shapes. To construct a free-form building, first of all, its skin has to be chopped into small pieces, which is called panelization. After panelization, the panels go through an optimization process to construct them economically. The panel's geometries are modified or regenerated through this optimization process. In this study, the panel optimization process of free-form buildings are performed through a case study. The panel shapes of the case study are modeled with Digital Project. To test the constructability of the various panels, 8 mock-up panels are made and laser scanning technology is applied to measure the preciseness of the panels manufactured in comparison with their original design.

Control of Thermal Crack in Mass Concrete Using Automated Curing System (양생자동화 시스템을 이용한 매스 콘크리트 온도균열 제어)

  • Ha, Ju-Hyung;Cho, Yun-Gu;Hyun, Tae-Yang;Lim, Chang-Keun;Seo, Tae-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.195-200
    • /
    • 2013
  • New thermal crack control system for mass concrete was developed to increase quality and to save construction period and cost. The principle of this system is that the curing water having proper temperature is supplied automatically to the surface of mass concrete member to keep the temperature difference between center and surface of concrete less than generally recommended temperature difference ($20^{\circ}C$). Mock-up test was conducted to investigate the validity of newly developed curing system. As a result, no crack was founded in the specimen using automated curing system developed in this study, while many cracks occurred in another specimen without automated curing system. It was also confirmed that the strength and the durability of the concrete cured by automated curing system were improved.

Mock-up Crack Reduction Performance Evaluation of Blast Furnace Slag Concrete Mixed with Expansive and Swelling Admixture (팽창재와 팽윤제가 혼입된 고로슬래그 콘크리트 Mock-up의 균열 저감 성능평가)

  • Sang-Hyuck Yoon;Won-Young Choi;Chan-Soo Jeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.552-559
    • /
    • 2023
  • The purpose of this study is to evaluate the crack reduction performance of blast furnace slag concrete mixed with expansive and swelling admixtures. As a basic performance test, various ingredients such as blast furnace slag fine powder (BFS), calcium sulfoaluminate (CSA), bentonite, and hydroxypropyl methyl cellulose (HPMC) were used, and the results showed that bentonite showed superior performance compared to HPMC. Afterwards, a MOCK-UP test was conducted to evaluate cracking and drying shrinkage according to the mixing ratio. As a result, when bentonite and a small amount of calcium phosphate were added, drying shrinkage was reduced and cracking was reduced. In particular, a cement mixture consisting of 30 % BFS, 1 % bentonite, and 1 % calcium phosphate showed optimal crack-free performance. It is believed that BFS concrete will contribute to compensating for shrinkage through continuous expansion activity and can be used for field applications.

A Study on the Characteristics of Daylight Distributions by Different Sky Conditions and Controlled Roller Shade Heights (천공종류 및 롤러쉐이드의 제어된 높이에 따른 주광분포 특성에 관한 연구)

  • Park, Byoung-Chul;Lim, Ji-Sun;Kim, Yu-Sin;Lee, Jeong-Ho;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.18-26
    • /
    • 2009
  • Daylight responsive dimming systems are one of lighting control systems which are to control artificial lightings using available daylight for energy savings. This system is not popular because useful daylight is usually blocked by uncontrolled passive shading systems in buildings. It is necessary to integrate daylight responsive dimming systems and automata! roller shading systems. In this research, mock-up test is performed to analyze the daylight distributions in three different rooms for integrated systems. Roller shades are installed in two rooms. One is fully downed and the other is controlled by sun profile angle. The other room has no shading system as a reference room.

Evaluation of Field Applicability of Shotcrete for Fiber-net Integrated Tunnel Support System through Mock-up Test (목업 테스트를 통한 숏크리트용 섬유 그물망 일체형 터널 지보시스템의 현장 적용성 평가)

  • Kim, Jiyoung;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The present study developed shotcrete for fiber-net integrated tunnel support system, which consists of fiber-net support materials including netlike fiber and shotcrete and integration technology between support materials. In addition, in order to evaluate the field applicability of the developed tunnel support system and compare with the performance of steel fiber reinforced shotcrete, mock -up test was conducted on the mock -up structure. The test results show that in the case of shotcrete containing coarse aggregate(S20A5RP10-C), the excessive rebound rate occurred as the secondary shotcrete was dropped during construction due to the degradation in bond performance with fiber-net. Also, in the case of steel fiber reinforced shotcrete, the amount of cast shotcrete fell short of target value due to the fiber ball and the degradation of pumpability. On the other hand, the amount of cast mortar shotcrete(S20A5RP10-M) and the installation position of fiber-net were almost close to the target values, and the lower rebound rate occurred compared to the steel fiber reinforced shotcrete.

Measurement of Verticality and Joint Gaps of a Near-surface Disposal Facility Vault Through a Mock-up Test for Fill-up Stages (표층처분시설 처분고의 목업테스트를 통한 채움단계별 수직도 및 이음부 벌어짐 측정)

  • Choi, Dong-Ho;Ann, Ki-Yong;Choi, In-Yong;Lee, Hyuk-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.537-544
    • /
    • 2021
  • In order to describe the fill-up stages of a near-surface disposal facility vault, a mock-up test is performed, and its behavior during the fil l -up stages is investigated. On an in-site concrete foundation with a l ength of 6600mm, a width of 6600mm and a thickness of 400mm, a reinforced concrete disposal vaul t is manufactured with 4 precast (PC) corner wal l s and 8 PC side wal l s. 36 wasted drums are pl aced on the 1st fl oor in 6 by 6, and then the empty space is fil l ed with grout fil l er. These processes are repeated up to the 5th floor, and the verticality and the joint gaps are measured for each fill-up stage. The verticality is measured using a level at 6 positions on each side wall (3 positions on the left and right sides, respectivel y), i.e. a total of 24 positions on the 4 side wal l s. The joint gaps are measured at 9 positions on each side wal l (3 positions on the left, center and right sides, respectively), I.e. a total 36 positions on the 4 side walls. To measure the joint gaps, crack tips are installed on the left and right sides of every joint gap, and vernier calipers are used. The measured verticality obtained through the mock-up test was found to be ±0.1° based on the initial stage (ST0), and the result of the joint gap was up to 0.38mm. This appears to have a negligible effect on the structure.

A Evaluation on the Field Application of High Strength Concrete for CFT Column (고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측)

  • Park, Je Young;Chung, Kyung Soo;Kim, Woo Jae;Lee, Jong In;Kim, Yong Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.707-714
    • /
    • 2014
  • CFT (Concrete-Filled Tube) is a type of steel column comprised of steel tube and concrete. Steel tube holds concrete and the concrete inside tube takes charge of compressive load. This study presents structural performance of the CFT column which has 73~100 MPa high strength concrete inside. Fluidity, mechanical compression, pump pressure test in flexible pipe were conducted for understanding properties of the high strength concrete. Material properties were achieved by various experimental tests, such as slump, slump flow, air content, U-box, O-Lot, L-flow. In addition, mock-up tests were conducted to monitor concrete filling, hydration heat, compressive strength. From construction sites in Sang-am dong and University of Seo-kang, long-term behaviors could be effectively predicted in terms of ACI 209 material model considering elastic deformation, shrinkage and creep.

A Study on the Estimating the Ultra-High Strength Concrete using Rock Test Hammer (Rock Test Hammer를 사용한 초고강도 콘크리트 강도추정에 관한 기초적 연구)

  • Nam, Kyung-Yong;Kim, Seong-Deok;Choi, Suk;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.229-237
    • /
    • 2019
  • This study examines the estimation of strength through a ultra-high strength concrete mock-up specimen using the rock compressive strength test hammer. According to the test result, the commonly used strength estimation formulae showed differences among them when the data of this test were applied. In additional, it show that these formulae underestimated the actual measurements further when the compressive strength was 30MPa or greater and deviated the distribution range of actual measurements in all strength ranges. The rock test hammer showed a higher correlation than type N Schmidt hammer regardless of the direction of hit for each type of W/B and the inclusion of coarse aggregate, and mortar showed a little higher correlation than concrete. As a result, it can be suggested that the coefficient of variation and the standard deviation of the mortar(2.26%/1.36) are lower than those of the concrete(4.06%/2.5), and the smaller the size of the coarse aggregate, the smaller the coefficient of variation and the more accurate the value.

Fabrication and Constructability of a General-Purpose Manufactured Precast Concrete Double Wall (범용 생산설비를 활용한 PC 더블월 제작 및 시공성에 관한 연구)

  • Park, Soon-Jeon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.465-476
    • /
    • 2023
  • This study introduces the development of a precast concrete double-wall, applicable to basement construction in apartment buildings. Unlike traditional precast concrete double walls, the developed double-wall doesn't require specialized manufacturing equipment such as a lathe. The constructability of these advanced technologies was validated through a full-scale mock-up test using the precast concrete double wall. The test specimens were constructed to represent a structural wall with a thickness of 250mm. It was observed that the quality of the in-situ concrete, filled between two single panels of 110mm thickness each, was excellent. The construction efficiency of the developed double-wall system for basement construction in an apartment building was also examined. Expert interviews about installation times of precast concrete elements were conducted to evaluate the speed of the basement floor's installation. The results showed that installation of precast concrete elements, including the proposed double walls, could be completed within 20 to 29 days for a basement in an apartment building. This indicates a three-fold increase in construction efficiency compared to traditional methods relying on in-situ casting.