• Title/Summary/Keyword: mobility of heavy metal

Search Result 78, Processing Time 0.03 seconds

Fraction and Mobility of Heavy Metals in the abandoned closed mine near Okdong stream sediments

  • Kim, Hee-Joung;Yang, Jae;Lee, Jai-Young;Jun, Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.56-63
    • /
    • 2003
  • Fractional composition and mobility of sediments some heavy metals in Okdong stream are investigated. The fractional scheme for sediment heavy metal was made for five chemically defined heavy metal forms as adsorbed fraction, carbonate fraction, reducible fraction, organic fraction, and residual fraction (Tessier et at., 1979). The most abundant fraction of the sediment heavy metal is reducible and secondly abundant organic fraction. Adsorbed fraction is minor part of the total heavy metals. Mobilization of sediment heavy metals in stream Okdong is occur 19.8∼56.7% of total cadmium concentrate. The most abundant fraction of the sediment metal is organic fraction in Cu, Pb metals investigated. Labile fraction of sediment metals are 0.5%∼48.5% of total Zn, 2.6%∼48.1% of total Pb, 0.2∼36.9% of total Cu respectively, Most of labile fraction consists of reducible fraction for Cd, Zn, adsorbed fraction for Pb, reducible fraction for Cu, adsorbed fraction for Ni. The Mobilization of Zn and Cu is most likely to occur when oxygen depletes and that of Pb and Ni occurs when physical impact, oxygen depletion and pH reduction.

  • PDF

The Applicability of the Acid Mine Drainage Sludge in the Heavy Metal Stabilization in Soils (산성광산배수슬러지의 토양 중금속 안정화 적용 가능성)

  • Kim, Min-Suk;Min, Hyungi;Lee, Byeongjoo;Chang, Sein;Kim, Jeong-Gyu;Koo, Namin;Park, Jeong-Sik;Bak, Gwan-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.78-85
    • /
    • 2014
  • BACKGROUND: Recent studies using various industrial wastes for heavy metal stabilization in soil were conducted in order to find out new alternative amendments. The acid mine drainage sludge(AMDS) contains lots of metal oxides(hydroxides) that may be useful for heavy metal stabilization not only waste water treatment but also soil remediation. The aim of this study was to investigate the applicability of acid mine drainage sludge for heavy metals stabilization in soils METHODS AND RESULTS: Alkali soil contaminated with heavy metals was collected from the agricultural soils affected by the abandoned mine sites nearby. Three different amounts(1%, 3%, 5%) of AMDS were applied into control soil and contaminated soil. For determining the changes in the extractable heavy metals, $CaCl_2$ and Mehlich-3 were applied as chemical assessments for metal stabilization. For biological assessments, lettuce(Lactuca sativa L.) and chinese cabbage(Brassica rapa var. glabra) were cultivated and accumulation of heavy metals on each plant were determined. It was revealed that AMDS reduced heavy metal mobility and bioavailability in soil, which resulted in the decreases in the accumulation of As, Cd, Cu, Pb, and Zn in each plant. CONCLUSION: Though the high level of heavy metal concentrations in AMDS, any considerable increase in the heavy metal availability was not observed with control and contaminated soil. In conclusion, these results indicated that AMDS could be applied to heavy metal contaminated soil as an alternative amendments for reducing heavy metal mobility and bioavailability.

Availability of Heavy Metals in Soils with Different Characteristics and Controversial Points for Analytical Methods of Soil Contamination in Korea (토양특성별 중금속 유효도와 토양오염 평가방법의 개선점)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.106-116
    • /
    • 2005
  • This experiment was conducted to investigate available extraction capacity and potential mobility of heavy metal according to the distribution property and contamination level of heavy metals in soils and to suggest a reform measure of soil environment assessment methodology applied with soil quality and the official soil heavy metal test methods in domestic and foreign countries. The soils were collected from the natural forest paddy with long-term application of same type fertilizer, and paddies near metal mine and industrial complex. The post-treatment methods of soil were partial extraction, acid digestion and sequential extraction methods. For the heavy metal contents with different soil properties, it was shown that their natural forest and paddy soil were slightly low and similar to the general paddy soil, while their paddies near metal mine and industrial complex were higher than the standard level of Soil Environment Protection Act. Heavy metal concentrations in the soils with different soil properties had difference between $HNO_3\;and\;HNO_3+HCl$ extractant by US-EPA 3051a method. There were highly significant positive relationships in both two methods. It was appeared that the higher extractable concentration ratio with 0.1N-HCl to total heavy metal content with $HNO_3+HCl$ extractant the greater total heavy metal content. There were highly significant positive correlationship between total heavy metal content and extractable content with 0.1N-HCl. For extractable capacity of soil extractable solution compared to the total heavy metal content it was appeared that it extractable method with 0.1N-HCl was higher than those with EDTA and DTPA. In extractable ratio with 0.1N-HCl in the contaminated paddy soils near mine and industrial complex, it was shown that the lower soil pH, the higher total heavy metal content. The order of a potential mobility coefficient by distribution of heavy metal content with ie different typies in the soil was Cd>Ni>Zn>Cu>Pb. It could be known that contamination characteristics of heavy metals with different types of soils were affected by different heavy metal components, contamination degree and soil chemical properties, and heavy metal concentration with different extractable methods had great variations with adjacent environment. To be compared with assessment methodology of soil environment impact at domestic and foreign countries with our results, it might be considered that there was necessary to make a single analysis method based on total heavy metal content with environmental overloading concept because of various analysis methods for total heavy metal content and present analysis method with great variation according to soil environment. In spite of showing higher concentration of heavy metal with acidic digestion than the extractable method, it might be considered that there is need to be adjusted the national standard of soil heavy metal contamination.

Source Identification of Heavy Metal Contamination at an Industrial Complex Established Using Construction Wastes (건설폐기물을 성토재로 사용한 산업단지에서의 중금속 오염 원인 규명)

  • JOO, Gwonho;KIM, Kibeum;NAM, Kyoungphile;JUNG, Jae-Woong;Moon, Seheum;CHOI, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • This paper is aimed at source tracking of soil heavy metal contamination at a site established by reusing construction wastes. The soil heavy metal concentration at the study site peaked at a depth range of 5-10 m. Column studies were conducted to investigate the possibility of the contamination scenario of infiltration of stormwater carrying heavy metals of ground origin followed by selective heavy metal accumulation at the 5-10 m depth range. Almost all amount of lead, zinc, cadmium, and nickel introduced to the columns each packed with 0-5 m or 5-10 m field soil were accumulated in the column. The very poor heavy metal mobility in spite of the weak association of the heavy metals with the soil (characterized by a sequential extraction procedure) can be attributed to the high pH (10-11) of the construction wastes. From the results, the heavy metal contamination of the subsurface soil by an external heavy metal source was determined to be very unlikely at the study site. The column study applied in the current study is expected to be a useful methodology to present direct evidence of the contaminant source tracking at soil contamination sites.

Distribution of Cd, Cu and Zn in a Sewage Sludge-treated Calcareous Soil

  • Lee, Sang-Mo;Cho, Chai-Moo;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.134-139
    • /
    • 1999
  • The distributions of Cd, Cu, and Zn concentration in soil treated with one (1988) or two (1988 and 1993) applications of sewage sludge at rates of 0, 25, 50, and $100Mg\;ha^{-1}$ (dry weight basis) were determined to assess the accumulation and mobility of the heavy metals. The heavy metals accumulated almost entirely in 0 to 15 cm soil depths. Small amounts of the metals moved out of the tillage zone (0-15 cm depth) into the subsoil, but even at the high rate of sewage sludge, little movement of heavy metals occurred below 100 cm depth. The water-extractable Cd, Cu, and Zn concentrations were very low regardless of the rate of sewage sludge application. Availability of metals as determined by DTPA extraction showed the percentage of DTPA-extractable/total concentration increased with sewage sludge application. In the 0-15 cm depth of sewage sludge treated soil, the percentage of DTPA-extractable/total concentration was higher than 46% for Cd, but the value was less than 27% and 17% for Cu and Zn, respectively. The Cd, Cu, and Zn added to this calcareous clay soil by sewage sludge application were not very mobile, and the amount of plant available form was very small.

  • PDF

Contamination Level and Behavior of Heavy Metals in Stream Sediments Within the Watershed of Juam Reservoir (주암댐 집수유역 내 하상퇴적물의 중금속 오염현황 및 거동 특성)

  • 염승준;이평구;강민주;신성천;유연희
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.311-324
    • /
    • 2004
  • We investigated the contamination and behavior of heavy metals in stream sediments within the watershed of Juam Reservoir. Many abandoned mines within the reservoir can act as a potential contaminant source for water quality. Heavy metal concentrations (Cr, Cu, Ni, Pb and Zn) in stream sediments from watershed are very low, indicating that content of heavy metals in the sediments probably do not affect the water quality in Juam Reservoir. However Pb concentration in the stream sediments increases downward streams, suggesting the possible diffusion of Pb contamination. According to the leaching ratio for stream sediments at a strong acidic condition in the abandoned mine areas, the relative mobility for metals decreases in the order of Pb>Zn=Cu>Ni>Cr, indicating that Pb can have a bad effect upon the water quality in Jum Reservoir. Moreover, if contaminated sediment is placed in the bottom of reservoir (i.e., reducing condition), the relative mobility of Pb is the highest, indicating that Pb in the bottom sediments can be leached to water at interface between water and sediment with changing in physicochemical conditions.

A Comparison on the Effect of Soil Improvement Methods for the Remediation of Heavy Metal contaminated Farm Land Soil near Abandoned Mines (중금속 오염 농경지 토양의 복원을 위한 토량개량법의 효과 비교)

  • Yu, Chan;Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.984-999
    • /
    • 2010
  • A long-term field demonstration experiment of selected stabilization method to reduce the heavy metal mobility in farmland soil contaminated by heavy metals around abandoned mine site was conducted. Field demonstration experiments were established on the contaminated farmland with the wooden plate(thickness=1cm) which dimension were width=200cm, Length=200cm, height=80cm and filled with treated soil, which was mixed with lime stone and steel refining slag except on control plot. Soil samples in the plots were collected and analyzed during the experiment period(2008. 2~2008. 8) after the installation of the plots. Field demonstration experiments results showed that the application ratio of lime stone 5% was effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF

A Comparison on Effect of Stabilization Methods for Heavy Metal contaminated Farm Land Soil by the Field Demonstration Experiment (현장실증시험을 통한 중금속 오염농경지의 안정화처리공법 효과비교)

  • Yu, Chan;Yun, Sung-Wook;Lee, Jung-Hoon;Choi, Seung-Jin;Choi, Duck-Yong;Yi, Ji-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1487-1506
    • /
    • 2009
  • A long-term field experiment of the selected stabilization methods(Cover system, full range and upper range treatment) was conducted to reduce the heavy metal mobility in farmland soil which was contaminated by heavy metals around abandoned mine site. Field experiments were established on the contaminated farmland with the wooden plate and filled with treated soil, which was mixed with lime stone and steel reforming slag except on control plot. Soil samples were collected and analyzed during the experiment period(about 4 months) after the installation of the plots. Field demonstration experiments results showed that the cover system and the full range treatment of the selected stabilization methods applied to the application ratio of lime stone 5% and steel refining slag 2% were effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF

Effects of Various Amendments on Heavy Metal Stabilization in Acid and Alkali Soils (여러 안정화제가 산성 및 알칼리 토양에서 중금속 안정화에 미치는 영향)

  • Kim, Min-Suk;Min, Hyungi;Kim, Jeong-Gyu;Koo, Namin;Park, Jeong Sik;Bak, Gwan In
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • BACKGROUND: Recent studies using many amendments for heavy metal stabilization in soil were conducted in order to find out new materials. But, the studies accounting for the use of appropriate amendments considering soil pH remain incomplete. The aim of this study was to investigate the effects of initial soil pH on the efficiency of various amendments. METHODS AND RESULTS: Acid soil and alkali soil contaminated with heavy metals were collected from the agricultural soils affected by the abandoned mine sites nearby. Three different types of amendments were selected with hypothesis being different in stabilization mechanisms; organic matter, lime stone and iron, and added with different combination. For determining the changes in the extractable heavy metals, water soluble, Mehlich-3, Toxicity Characteristic Leaching Procedure, Simple Bioavailability Extraction Test method were applied as chemical assessments for metal stabilization. For biological assessments, soil respiration and root elongation of bok choy (Brassica campestris ssp. Chinensis Jusl.) were determined. CONCLUSION: It was revealed that lime stone reduced heavy metal mobility in acid soil by increasing soil pH and iron was good at stabilizing heavy metals by supplying adsorption sites in alkali soil. Organic matter was a good source in terms of supplying nutrients, but it was concerning when accounting for increasing metal availability.

Research with Statistical Model to Analyze Efficiency of Heavy Metal Soil Washing (통계학적 모델을 이용한 중금속 토양 세척의 효율 분석에 관한 연구)

  • Oh, Sangyoung;Yoo, Jongchan;Baek, Kitae;Kim, Hanseung;Park, Jaewoo
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.14-24
    • /
    • 2018
  • In soil washing, there are many variables including types of reagent and contaminant, washing time, soil-liquid ratio, washing cycles, washing agent concentrations, and etc. To identify the most influencing factors on soil washing process, regression analysis was performed for eight single variables and five combined variables. A quantitative model that employs W/H (molar ratio of washing agent to heavy metal) as a major variable was established based on the regression. The validity of the model was demonstrated by conducting lab experiments with Cu, Pb, Zn, Ni and As-contaminated soils, and various washing reagents including acetic acid, citric acid, malic acid, oxalic acid, ethylenediamine tetraacetic acid (EDTA) and nitriloacetic acid (NTA). The washing efficiencies were compared with the EDTA washing data reported in the literature. The correlation between W/H and removal efficiency was analyzed after dividing data into two groups according to the heavy metal mobility.