• 제목/요약/키워드: mobile image retrieval

검색결과 41건 처리시간 0.028초

Descriptor 조합 및 동일 병명 이미지 수량 역비율 가중치를 적용한 유사도 기반 작물 질병 검색 기술 설계 및 구현 (Design and Implementation of a Similarity based Plant Disease Image Retrieval using Combined Descriptors and Inverse Proportion of Image Volumes)

  • 임혜진;정다운;유성준;구영현;박종한
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.30-43
    • /
    • 2018
  • 영상의 특징인 색상, 모양, 질감 등을 이용해 영상을 검색하는 연구들은 많이 진행되어 왔다. 또한 작물의 질병 영상과 관련된 연구들도 진행되고 있다. 농업 현장에서 재배되는 작물에 발생한 질병을 확인하는데 도움이 되기 위해 본 논문에서는 시설원예 작물의 질병 영상을 이용한 유사도 기반 작물 질병 검색 시스템을 제안한다. 제안하는 시스템은 단일 Descriptor를 사용하지 않고, 조합 Descriptor를 통해 기존 대비 영상의 유사도 검색 성능을 높였고 유사도 검색 결과를 가독성 높게 사용자에게 제공하기 위해 가중치 기반 산출방법을 적용했다. 본 논문에서는 총 13개의 개별 Descriptor를 이용해 조합을 진행했다. 조합 Descriptor를 이용해 6개 작물의 질병에 대해 유사도 검색을 진행했고 작물별로 평균 accuracy가 높은 조합 Descriptor를 선정해 유사도 검색에 사용했다. 검색된 결과는 병명의 비율을 기반으로 한 산출방법과 가중치를 기반으로 한 산출방법을 사용해 백분율로 나타냈다. 병명의 비율을 기반으로 한 산출방법은 질의 영상과 유사도 검색에 사용되는 영상의 수가 많은 병명이 1순위로 출력되는 문제점이 있다. 이를 해결하기 위해 가중치를 기반으로 한 산출방법을 사용했다. 작물의 병명별 테스트 영상을 두 가지 산출방법에 적용해 검색 성능을 측정했다. 작물의 질병별로 두 가지 산출방법에 대해 검색 성능 값의 평균을 비교한 결과 고추, 사과 작물에서는 병명의 비율을 기반으로 한 산출방법의 성능이 가중치를 기반으로 한 산출방법의 성능보다 평균 약 11.89%의 높은 성능 결과를 보였다. 국화, 딸기, 배, 포도 작물에서는 가중치를 기반으로 한 산출방법이 병명의 비율을 기반으로 한 산출방법의 성능보다 평균 약 20.34%의 높은 성능 결과를 보였다. 또한 본 논문에서 제안하는 시스템의 UI/UX는 실제 사용자의 피드백을 통해 편리하게 구성했다. 시스템의 화면마다 상단에 제목과 설명을 출력했고 사용자가 질병의 정보를 보기 편리하게 화면을 구성했다. 검색된 질병의 정보는 위에서 제안한 산출방법을 토대로 유사한 질병의 영상과 병명을 출력한다. 시스템의 환경은 PC 환경 기반의 웹 브라우저와 모바일 디바이스 환경 기반의 웹 브라우저를 통해 사용할 수 있도록 구현했다.

모바일 환경에서 추론을 이용한 의미 기반 이미지 어노테이션 시스템 설계 및 구현 (Semantic Image Annotation using Inference in Mobile Environments)

  • 서광원;임동혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.999-1000
    • /
    • 2017
  • 본 논문에서는 이전의 의미 기반 이미지 어노테이션 및 검색 시스템 Moment(Mobile Semantic Image Annotation and Retrieval System)에 RDF(Resource Description Framework) 추론 기능을 사용한 어노테이션 방법을 제안한다. 이를 위하여 제안된 시스템은 Apache Jena Inference API를 통해 구현되였으며 각 이미지들이 가진 어노테이션의 개수가 증가되었다. 자동으로 추론된 결과 또한 SPARQL 질의를 통해 검색이 가능하며, 기존 어노테이션 결과에 대한 의미 검색을 더욱 효과적으로 할 수 있게 한다.

모바일 장치기반의 바이오 객체 이미지 매칭 시스템 설계 및 구현 (The design and implementation of Object-based bioimage matching on a Mobile Device)

  • 박찬일;문승진
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.1-10
    • /
    • 2019
  • 객체기반 이미지 매칭 알고리즘 기술은 이미지 프로세싱 및 컴퓨터 비전 분야에서 광범위하게 사용되어 왔다. 이러한 이미지 매칭 알고리즘 기반의 수 많은 응용 프로그램은 객체인식, 3D 모델링, 비디오 추적 및 바이오 정보학 분야에서 개발되어 왔다. 이미지 매칭 알고리즘의 좋은 예는 Scale invariant Feature Transform(SIFT) 이다. 하지만 SIFT 알고리즘 기술을 이용한 많은 응용 프로그램은 클라이언트-서버 구조가 아닌 하나의 시스템으로 운영되어 왔다. 본 논문은 모바일 플랫폼 기반에서 SIFT 알고리즘 기술을 이용하여 클라이언트-서버 구조로 이미지 매칭 시스템을 구현하였다. 제안된 시스템은 바이오 이미지 객체를 매칭하고 식별하여 사용자에게 유용한 정보를 제공한다. 또한 본 논문의 주요 방법론적 기여는 모바일 장치에 유비쿼터스 인터넷 연결을 활용하여 편리한 사용자 인터페이스와 객체간의 상호작용적인 묘사, 분할, 표현, 매칭 및 바이오 이미지를 검색한다. 본 논문은 이러한 기술과 함께 바이오 정보학에 대한 의미론적 이미지 검색을 수행하며 응용 프로그램에서 객체 이미지의 다른 점을 추출하여 신뢰할 수 있는 이미지 매칭을 수행하는 예를 제시해주었다.

클러스터링과 차원축약 기법을 통합한 영상 검색 시스템 (Combined Image Retrieval System using Clustering and Condensation Method)

  • 이세한;조정원;최병욱
    • 전자공학회논문지CI
    • /
    • 제43권1호
    • /
    • pp.53-66
    • /
    • 2006
  • 본 논문에서는 전체 차원으로 데이터베이스 내의 모든 영상에 대해 순차적인 검색을 했을 때의 상세 검색 결과와 동일한 적합성을 유지하면서 검색 속도를 훨씬 더 향상시킬 수 있는 통합 검색 시스템을 제안한다. 통합 검색 시스템은 적합성을 유지하는 서로 다른 두 독립적인 시스템이 병합되어 있다. 하나는 특징 벡터 차원 축약을 이용한 2단계 검색 시스템이고 나머지 하나는 이진 트리 클러스터링을 이용한 2단계 검색 시스템이다. 각각의 방법은 1단계에서 상세 검색에서의 검색 결과를 항상 포함하는 후보 영상들을 추출하고, 추출된 후보 영상들을 대상으로 2단계 검색에서 전체 차원으로 재 검색을 한다 그러므로 각 방법과 통합 검색 방법은 모두 상세 검색을 수행했을 때와 동일한 검색 결과를 얻게 된다. 특징 벡터 차원 축약을 이용한 2단계 검색 방법은 Cauchy- Schwartz 부등식의 성질을 이용하여 특징 벡터를 차원 축약하여 검색에 사용하는 방법이다. 이때 전체 검색 시간을 최소로 하는 최적 차원 축약율이 존재하게 되고, 이를 후보 영상 추출을 위한 1차 검색에 적용하게 된다. 이진 트리 클러스터링을 이용한 2단계 검색 방법은 재귀적인 2-means 클러스터링을 통해 각 클러스터의 반경이 동일하게 동적으로 분할하는 방법이다. 동일한 적합성 유지를 위해 유사도 기준이 보정된 질의를 통해 1단계 검색에서 후보 클러스터를 추출하고, 2단계 검색에서 후보 클러스터 내의 영상을 대상으로 최종 결과 영상들을 얻게 된다. 통합 검색 방법은 위의 두 검색 방법을 통합한 것으로 서로 독립적인 두 방법을 동시에 적용함으로써 검색 시스템의 성능을 훨씬 더 향상시킬 수 있다 제안하는 방법은 상세 검색의 적합성을 유지하면서도 검색 속도를 훨씬 더 향상시킬 수 있음이 실험을 통해 입증되었다.

색채조화의 정량적 감성평가에 기초한 이미지 검색법 (An Image Retrieval Method based on Quantitative Emotion Evaluation on Color Harmony)

  • 김돈한;정재욱
    • 감성과학
    • /
    • 제15권1호
    • /
    • pp.87-96
    • /
    • 2012
  • 본 논문에서는 사용자의 감성적 요구에 적합한 이미지를 탐색한 후 문-스펜서(P. Moon&D. E. Spencer)의 색채 조화론에 기초하여 조화의 정도가 가장 높은 이미지들을 순위별로 제시하는 이미지 검색법을 제안하였다. 이미지 검색은 키워드로 주어진 감성어휘와 관련된 색채성분이 가장 많이 포함된 이미지 화상을 검색하여 미도(Aesthetic Measure)를 계산한 후 순위별로 제시하는 방법으로 이루어진다. 문-스펜서의 색채 조화론을 적용한 이미지 검색법의 타당성을 검증하기 위하여 200개의 샘플 이미지를 대상으로 시스템이 제시한 미도순위와 사용자 만족도 평가에 의한 순위를 비교하였다. 분석결과 15개의 감성어휘별로 시스템이 출력한 이미지들의 미도 순위에 대한 실험 참가자들의 평균 만족도는 7점 척도 중 5.0으로 나타났다. 또한 시스템이 산출한 이미지들의 미도 순위와 설문 참가자가 평가한 만족도 순위 사이와의 일치 여부를 알아보기 위해 상관분석을 실시한 결과 감성어휘 'Clear'를 제외한 14개의 어휘 모두에서 상관계수 0.5 이상의 양호한 정적상관을 보였다. 이와 같은 연구결과로부터 문-스펜서의 색채 조화론을 바탕으로 제안한 감성검색법이 이미지 데이터베이스와 같은 시각자극의 검색에 있어서도 사용자의 감성을 적절히 반영할 수 있는 가능성을 확인하였다.

  • PDF

MapReduce 기반 분산 이미지 특징점 추출을 활용한 빠르고 확장성 있는 이미지 검색 알고리즘 (A Fast and Scalable Image Retrieval Algorithms by Leveraging Distributed Image Feature Extraction on MapReduce)

  • 송환준;이진우;이재길
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1474-1479
    • /
    • 2015
  • IoT 시대를 맞아 모바일 기기의 급격한 성능 향상에 힘입어 폭발적으로 증가하는 멀티미디어 빅데이터의 빠른 처리가 요구되고 있다. 하지만, 이런 환경의 대격변 속에서도 이미지 검색 연구 분야에서는 정확도 향상에 주로 초점을 맞춘 나머지, 고해상도 멀티미디어 데이터 Query에 대한 빠른 처리 측면에서는 제대로 대응하지 못하고 있다. 이에 우리는 이미지 검색만을 분산화한 선행연구와 달리 MapReduce 기반 분산 이미지 특징점 추출 기법을 활용하여 정확도는 유지하면서 빠른 응답시간을 확보하며, BIRCH 인덱싱을 기반으로 메모리 확장성까지 해결한 새로운 분산 이미지 검색 알고리즘을 제안한다. 그리고 제안하는 분산 이미지 검색 알고리즘의 정확도, 처리시간, 확장성에 대한 실험을 통해 뛰어난 성능을 확인한다.

움직임 감지를 이용한 네트워크 카메라 기반 영상보안 시스템 구현 (Implementation of Video Surveillance System with Motion Detection based on Network Camera Facilities)

  • 이규웅
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.169-177
    • /
    • 2014
  • DVR 및 NVR을 이용한 디지털 저장매체를 영상감시 시스템에서 활용하게 되면서 영상처리 모듈의 개발은 영상 보안 시장의 필수적인 요소이다. 특히 네트워크 카메라의 등장은 기존 아날로그 방식의 CCTV를 대체하면서 영상처리 모듈 개발의 필요성을 더욱 부각시키고 있다. 본 논문에서는 움직임 감지 기법을 이용한 영상 감시 서버를 설계 및 구축하고 서버에서 처리되는 영상처리 결과를 실시간으로 모바일 디바이스에서 확인 가능한 영상감시 시스템을 개발하였다. 영상처리를 위해 리눅스 기반의 서버에 오픈소스 OpenCV를 활용한 영상처리 모듈을 개발하였고, 네트워크 카메라로부터 전송되는 실시간 비디오 데이터를 저장 및 가공하여 안드로이드기반 모바일 기기에서 검색 가능한 영상감시 시스템을 구축하였다.

모바일 이미지 기반의 문자인식 시스템 (The Character Recognition System of Mobile Camera Based Image)

  • 박영현;이형진;백중환
    • 한국산학기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.1677-1684
    • /
    • 2010
  • 최근 모마일 폰의 발달과 스마트 폰의 보급으로 인해서 많은 콘텐츠들이 개발되어지고 있다. 특히, 모바일 휴대장치에 소형 카메라가 탑재되면서부터 카메라로부터 입력되어지는 영상 기반 콘텐츠 개발은 사람들의 흥미뿐만 아니라 활용 면에서도 중요한 부분을 차지하고 있다. 그중 문자인식 시스템은 시각 장애인 보행 보조 시스템, 로봇 자동 주행 시스템, 비디오 자동 검색 및 색인 시스템, 텍스트 자동 번역 시스템 등과 같은 활용영역에서 매우 광범위하게 쓰일 수 있다. 따라서 본 논문에서는 스마트 폰 카메라로 입력되는 자연 영상에 포함되어 있는 텍스트를 추출 및 인식하고 음성으로 출력해주는 시스템을 제안하였다. 텍스트 영역을 추출하기 위해 Adaboost 알고리즘을 이용하고 추출된 개별 텍스트 후보영역의 문자 인식에는 오류 역전파 신경망을 이용하였다.

SIFT 알고리즘을 이용한 혼합형 모바일 교육 시스템 (Mixed Mobile Education System using SIFT Algorithm)

  • 홍광진;정기철;한은정;양종열
    • 한국산업정보학회논문지
    • /
    • 제13권2호
    • /
    • pp.69-79
    • /
    • 2008
  • 무선 인터넷과 모바일 기기의 보급으로 언제 어디서나 원하는 정보를 얻을 수 있는 유비쿼터스 환경을 위한 인프라가 구축되면서 교육을 포함한 다양한 분야에서 오프라인과 온라인 컨텐츠를 동시에 이용함으로써 정보 전달의 효율성을 높일 수 있는 방법에 대한 연구가 활발하게 이루어지고 있다. 본 논문은 사용자에게 모바일 기기를 이용하여 오프라인과 온라인 컨텐츠를 함께 제공하여 교육의 효과를 높일 수 있는 혼합형 모바일 교육 시스템(Mixed Mobile Education System: MME)을 제안한다. 제안된 시스템은 기존의 연구와 달리 사용자에게 자연스러운 환경을 제공하기 위해서 부가적인 태그를 사용하지 않는다. 태그를 사용하는 시스템의 경우 새로운 데이터의 등록이 어렵고 유사한 내용의 오프라인 컨텐츠 사용이 불가능하기 때문이다. 본 논문에서 우리는 저화질의 카메라를 통해 입력받은 영상에서 잡음 색상 왜곡, 크기 및 기울기 변화에 영향을 적게 받는 특징점을 추출하고 오프라인 컨텐츠를 인식하기 위해 Scale Invariant Feature Transform(SIFT) 알고리즘을 사용하였다. 또한 클라이언트-서버 구조를 사용함으로써 모바일 장치의 제한적인 저장 능력 문제를 해결하고 데이터의 등록 및 수정이 용이하도록 하였다. 실험을 통해 기존의 흔합형 교육 시스템과의 성능을 비교하고 제안된 시스템의 장단점을 확인하였으며, 시스템을 실생활에 적용하였을 경우 다양한 상황에서도 사용자에게 만족할만한 성능을 제공함을 확인하였다.

  • PDF