• Title/Summary/Keyword: mobile cloud

Search Result 561, Processing Time 0.023 seconds

Information Security Model in the Smart Military Environment (스마트 밀리터리 환경의 정보보안 모델에 관한 연구)

  • Jung, Seunghoon;An, Jae-Choon;Kim, Jae-Hong;Hwang, Seong-Weon;Shin, Yongtae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.199-208
    • /
    • 2017
  • IoT, Cloud, Bigdata, Mobile, AI, and 3D print, which are called as the main axis of the 4th Industrial Revolution, can be predicted to be changed when the technology is applied to the military. Especially, when I think about the purpose of battle, I think that IoT, Cloud, Bigdata, Mobile, and AI will play many role. Therefore, in this paper, Smart Military is defined as the future military that incorporates these five technologies, and the architecture is established and the appropriate information security model is studied. For this purpose, we studied the existing literature related to IoT, Cloud, Bigdata, Mobile, and AI and found common elements and presented the architecture accordingly. The proposed architecture is divided into strategic information security and tactical information security in the Smart Military environment. In the case of vulnerability, the information security is divided into strategic information security and tactical information security. If a protection system is established, it is expected that the optimum information protection can be constructed within an effective budget range.

Mobile Energy Efficiency Study using Cloud Computing in LTE (LTE에서 클라우드 컴퓨팅을 이용한 모바일 에너지 효율 연구)

  • Jo, Bokyun;Suh, Doug Young
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • This study investigates computing offloading effect of cloud in real-time video personal broadcast service, whose server is mobile device. Mobile device does not have enough computing resource for encoding video. The computing burden is offloaded to cloud, which has abundant resources in terms of computing, power, and storage compared to mobile device. By reducing computing burden, computation energy can be saved while transmission data amount increases because of decreasing compression efficiency. This study shows that the optimal operation point can be found adaptively to time-varying LTE communication condition result of tradeoff analysis between offloaded computation burden and increase in amount of transmitted data.

A Constrained Multi-objective Computation Offloading Algorithm in the Mobile Cloud Computing Environment

  • Liu, Li;Du, Yuanyuan;Fan, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4329-4348
    • /
    • 2019
  • Mobile cloud computing (MCC) can offload heavy computation from mobile devices onto nearby cloudlets or remote cloud to improve the performance as well as to save energy for these devices. Therefore, it is essential to consider how to achieve efficient computation offloading with constraints for multiple users. However, there are few works that aim at multi-objective problem for multiple users. Most existing works concentrate on only single objective optimization or aim to obtain a tradeoff solution for multiple objectives by simply setting weight values. In this paper, a multi-objective optimization model is built to minimize the average energy consumption, time and cost while satisfying the constraint of bandwidth. Furthermore, an improved multi-objective optimization algorithm called D-NSGA-II-ELS is presented to get Pareto solutions with better convergence and diversity. Compared to other existing works, the simulation results show that the proposed algorithm can achieve better performance in terms of energy consumption, time and cost while satisfying the constraint of the bandwidth.

Two Factor Authentication for Cloud Computing

  • Lee, Shirly;Ong, Ivy;Lim, Hyo-Taek;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.427-432
    • /
    • 2010
  • The fast-emerging of cloud computing technology today has sufficiently benefited its wide range of users from individuals to large organizations. It carries an attractive characteristic by renting myriad virtual storages, computing resources and platform for users to manipulate their data or utilize the processing resources conveniently over Internet without the need to know the exact underlying infrastructure which is resided remotely at cloud servers. However due to the loss of direct control over the systems/applications, users are concerned about the risks of cloud services if it is truly secured. In the literature, there are cases where attackers masquerade as cloud users, illegally access to their accounts, by stealing the static login password or breaking the poor authentication gate. In this paper, we propose a two-factor authentication framework to enforce cloud services' authentication process, which are Public Key Infrastructure (PKI) authentication and mobile out-of-band (OOB) authentication. We discuss the framework's security analysis in later session and conclude that it is robust to phishing and replay attacks, prohibiting fraud users from accessing to the cloud services.

Design of Configuration Management using Homomorphic Encryption in Mobile Cloud Service (모바일 클라우드 서비스 상에서 준동형 암호 기반의 형상 관리 방안)

  • Kim, Sun-Joo;Kim, Jin-Mook;Jo, In-June
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2217-2223
    • /
    • 2012
  • As smartphone users are over 20 million, companies, which offer cloud computing services, try to support various mobile devices. If so, users can use the same cloud computing service using mobile devices, as sharing document. When user share the work, there are problem in configuration management, data confidentiality and integrity. In this paper, we propose a method that cloud computing users share document efficiently, edit encrypted docuements, and manage configuration based on homomorphic encryption, which integrity is verifiable.

A Secure Identity Management System for Secure Mobile Cloud Computing (안전한 모바일 클라우드 컴퓨팅을 위한 ID 관리 시스템)

  • Brian, Otieno Mark;Rhee, Kyung-Hyune
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.516-519
    • /
    • 2014
  • Cloud computing is an up-and-coming paradigm shift transforming computing models from a technology to a utility. However, security concerns related to privacy, confidentiality and trust are among the issues that threaten the wide deployment of cloud computing. With the advancement of ubiquitous mobile-based clients, the ubiquity of the model suggests a higher integration in our day to day life and this leads to a rise in security issues. To strengthen the access control of cloud resources, most organizations are acquiring Identity Management Systems (IDM). This paper presents one of the most popular IDM systems, specifically OAuth, working in the scope of Mobile Cloud Computing which has many weaknesses in its protocol flow. OAuth is a Delegated Authorization protocol, and not an Authentication protocol and this is where the problem lies. This could lead to very poor security decisions around authentication when the basic OAuth flow is adhered to. OAuth provides an access token to a client, so that it can access a protected resource, based on the permission of the resource owner. Many researchers have opted to implement OpenlD alongside OAuth so as to solve this problem. But OpenlD similarly has several security flows. This paper presents scenarios of how insecure implementations of OAuth can be abused maliciously. We incorporate an authentication protocol to verify the identities before authorization is carried out.

Design of Security Service Model in Dynamic Cloud Environment (동적 클라우드 환경에 적합한 보안 서비스 모델 설계)

  • Jeong, Yoon-Su
    • Journal of Convergence Society for SMB
    • /
    • v.2 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • The rapid development of cloud computing and mobile internet service changes to an mobile cloud service environment that can serve and pay computing source that users want anywhere and anytime. But when user misses mobile device, the respond to any threat like user's personal information exposal is insufficient. This paper proposes cloud service access control model to provide secure service for mobile cloud users to other level users. The proposed role-based model performs access authority when performs user certification to adapt various access security policy. Also, the proposed model uses user's attribute information and processes before user certification therefore it lowers communication overhead and service delay. As a result, packet certification delay time is increased 3.7% and throughput of certification server is increased 10.5%.

  • PDF

A Dynamic Task Distribution approach using Clustering of Data Centers and Virtual Machine Migration in Mobile Cloud Computing (모바일 클라우드 컴퓨팅에서 데이터센터 클러스터링과 가상기계 이주를 이용한 동적 태스크 분배방법)

  • Mateo, John Cristopher A.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.103-111
    • /
    • 2016
  • Offloading tasks from mobile devices to available cloud servers were improved since the introduction of the cloudlet. With the implementation of dynamic offloading algorithms, mobile devices can choose the appropriate server for the set of tasks. However, current task distribution approaches do not consider the number of VM, which can be a critical factor in the decision making. This paper proposes a dynamic task distribution on clustered data centers. A proportional VM migration approach is also proposed, where it migrates virtual machines to the cloud servers proportionally according to their allocated CPU, in order to prevent overloading of resources in servers. Moreover, we included the resource capacity of each data center in terms of the maximum CPU in order to improve the migration approach in cloud servers. Simulation results show that the proposed mechanism for task distribution greatly improves the overall performance of the system.

Outsourcing decryption algorithm of Verifiable transformed ciphertext for data sharing

  • Guangwei Xu;Chen Wang;Shan Li;Xiujin Shi;Xin Luo;Yanglan Gan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.998-1019
    • /
    • 2024
  • Mobile cloud computing is a very attractive service paradigm that outsources users' data computing and storage from mobile devices to cloud data centers. To protect data privacy, users often encrypt their data to ensure data sharing securely before data outsourcing. However, the bilinear and power operations involved in the encryption and decryption computation make it impossible for mobile devices with weak computational power and network transmission capability to correctly obtain decryption results. To this end, this paper proposes an outsourcing decryption algorithm of verifiable transformed ciphertext. First, the algorithm uses the key blinding technique to divide the user's private key into two parts, i.e., the authorization key and the decryption secret key. Then, the cloud data center performs the outsourcing decryption operation of the encrypted data to achieve partial decryption of the encrypted data after obtaining the authorization key and the user's outsourced decryption request. The verifiable random function is used to prevent the semi-trusted cloud data center from not performing the outsourcing decryption operation as required so that the verifiability of the outsourcing decryption is satisfied. Finally, the algorithm uses the authorization period to control the final decryption of the authorized user. Theoretical and experimental analyses show that the proposed algorithm reduces the computational overhead of ciphertext decryption while ensuring the verifiability of outsourcing decryption.

Testing Implementation of Remote Sensing Image Analysis Processing Service on OpenStack of Open Source Cloud Platform (오픈소스 클라우드 플랫폼 OpenStack 기반 위성영상분석처리 서비스 시험구현)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.141-152
    • /
    • 2013
  • The applications and concerned technologies of cloud computing services, one of major trends in the information communication technology, are widely progressing and advancing. OpenStack, one of open source cloud computing platforms, is comprised of several service components; using these, it can be possible to build public or private cloud computing service for a given target application. In this study, a remote sensing image analysis processing service on cloud computing environment has designed and implemented as an operational test application in the private cloud computing environment based on OpenStack. The implemented service is divided into instance server, web service, and mobile app. A instance server provides remote sensing image processing and database functions, and the web service works for storage and management of remote sensing image from user sides. The mobile app provides functions for remote sensing images visualization and some requests.