• 제목/요약/키워드: mixture refrigerant

검색결과 148건 처리시간 0.02초

수평평활관내의 비공비 혼합냉매의 응축에 대한 예측모델 (A Prediction Model for Condensation of Zeotropic Refrigerant Mixtures Inside a Horizontal Smooth Tube)

  • 이상무;박병덕
    • 설비공학논문집
    • /
    • 제13권4호
    • /
    • pp.262-270
    • /
    • 2001
  • This paper deals with a prediction method for the condensation of ternary refrigerant mixture inside a horizontal smooth tube. Based on some reliable assumptions, the governing equations for the local heat and mass transfer characteristics are derived, and the prediction for the condensation of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a, including R407C, is carried out. The local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, mass flux etc. are obtained for a constant wall temperature and a constant wall heat flux conditions, and the effects of the composition of HFC32/HFC125/HFC134a on heat transfer characteristics are examined. The prediction result is also compared with experimental data for condensation of ternary refrigerant mixtures. The predicted wall temperature distribution has a similar trend with experimental data but the predicted local heat transfer coefficients are 20-30% higher than the experimental data.

  • PDF

가열기가 내장된 냉매오일 분리기의 성능 고찰 (Performance Analysis of the Refrigerant oil separator with a build-in heater)

  • 김종열
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.41-46
    • /
    • 2011
  • Refrigerant oil reduces friction between piston and cylinder of compressor and is normally hard to mix or dissolve in refrigerant. Oil separator deprives refrigerating oil from mixed solution of refrigerant and refrigerant oil. Sometimes much machine oil is carried into an evaporator and is applied to surface of the evaporator, and then disturbs heat transfer through it. Well-made oil separator helps refrigerating system stable and evaporator sustain full capacity. In this paper, new oil separate with different way to structure is suggested and tested. As result the new separates is 13% higher at 0C with 10% mixture and 6% higher at 0C with 20% mixture.

대체냉매의 2중관 응축기 열 및 물질전달과 성능평가 (Heat and Mass Transfer Characteristics and Performance Evaluation of a Double-Tube Condenser for an Alternative Refrigerant)

  • 이상무;박병덕;소산번
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.468-476
    • /
    • 2002
  • This paper deals with heat and mass transfer characteristics and performance evaluation of a counter flow double-tube condenser for a multi-component refrigerant mixture. The local heat and mass transfer characteristics of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a are evaluated for a counter flow double-tube condenser cooled by water. Then, the local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, heat flux and condensation mass flux are obtained. The heat exchange performance for ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a on the total pressure drop and the heat transfer characteristics are also compared with those for R404A, R410A, R502, R22, R32, Rl23 and R134a.

프로판/이소부탄 혼합냉매를 적용한 가정용 소형 멀티 냉동시스템의 성능특성에 관한 연구 (Evaluation of the Performance Characteristics of Propane/isobutene Refrigerant Mixtures in a Small multi-refrigeration System)

  • 이무연;최석재;김상욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1945-1950
    • /
    • 2004
  • In this paper, The performance of Kim-Chi refrigerator with three evaporator and one compressor was investigated in employing 55% propane and 45% isobutane (R290/R600a) refrigerant mixture as an alternative refrigerant of R134a. The drop in test was performed by varying both refrigerant charge amount and capillary tube length in order to find both the performance and reliability of a small multi-refrigeration system. As a result, Both the power consumption and COP is increased by about 15% and 10%, respectively as compared to the baseline R134a system. In addition, the propane/isobutene refrigerant mixture system took advantage of the minimization of modification and redesigning of system components because of similar thermodynamic properties with R134a such as saturation pressure, temperature, normal boiling point(NBP) characteristics

  • PDF

혼합냉매 혼합비에 따른 천연가스 액화공정 성능 비교 (Determination of Mixing Ratio of Mixed Refrigerants and Performance Analysis of Natural Gas Liquefaction Processes)

  • 김민진;이경범;유준
    • Korean Chemical Engineering Research
    • /
    • 제51권6호
    • /
    • pp.677-684
    • /
    • 2013
  • 혼합냉매를 사용하여 천연가스를 액화하는 혼합냉매공정(Mixed refrigerant cycle, MRC)은 공정이 간단하고 장치비가 적게 들며 운전 또한 용이하여 널리 채택되고 있는 공정이다. MRC에서 중요한 기술 중 하나는 혼합냉매를 선택하고 최적의 혼합비를 결정하는 것이다. 본 연구에서는 일반적인 MRC에서 혼합냉매와 혼합냉매의 혼합비가 공정의 성능에 미치는 효과를 살펴보았다. 이를 위해 통계적 기법 중 실험계획법의 하나인 혼합물 설계와 반응 표면법을 이용하여 전체 공정의 에너지 소비가 최소가 되게 하는 최적의 냉매를 선택하고 그 혼합비를 결정하였다. 여러 냉매와 혼합비에 따른 MRC 공정의 모사는 Aspen HYSYS를 사용하였으며 혼합물설계와 반응 표면법은 Minitab을 사용하였다. 연구결과 냉매로는 methane ($C_1$), ethane ($C_2$), propane ($C_3$)과 nitrogen ($N_2$)가 선택되었으며 에너지 소비를 최소화하는 혼합비(몰 비) 또한 구할 수 있었다.

프로판/이소부탄(R-290/R-600a) 혼합 냉매를 적용한 가정용 소형 멀티 냉동시스템의 성능특성에 관한 연구 (A Study on Performance Characteristics of Propane/Isobutane Refrigerant Mixtures in a Domestic Small Multi-Refrigeration System)

  • 김상욱;이무연
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.271-278
    • /
    • 2005
  • In this paper, the performance of Kim-chi refrigerator with three evaporator and one compressor was investigated in employing $55\%$ propane and $45\%$ isobutane (R290/R600a) refrigerant mixture as an alternative refrigerant of R134a. The drop-in test was performed by varying both refrigerant charge and capillary tube length in order to find both the performance and reliability of a small multi-refrigeration system. Results show that the power consumption is decreased by about $15\%$ and COP is increased by about $10\%$, respectively as compared to the baseline system using R-134a. In addition, the propane/isobutane refrigerant mixture system took advantage of the minimization of modification and redesigning of system components because thermodynamic properties such as saturation pressure, temperature, normal boiling point(NBP) characteristics are similar to those of R134a. The reduction of sales cost is caused by the decrease of refrigerant cost per unit mass and refrigerant charge amount necessary for the refrigeration system.

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

프로판/부탄 혼합자연냉매의 평활관과 마이크로핀관 내의 응축성능평가 (Condensing Performance Evaluation in Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane))

  • 이상무;이주동;박병덕
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.816-823
    • /
    • 2005
  • This paper deals with the heat exchange performance prediction of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and a micro-fin tube. The local characteristics of heat transfer, mass transfer and pressure drop are calculated using a prediction method developed by the authors. The total pressure drop and the overall heat transfer coefficient are also evaluated on various heat exchange conditions. The calculated results of the natural refrigerant mixtures are compared with HCFC22. In conclusion, natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane are appropriate candidates for alternative refrigerant from the viewpoint of heat transfer characteristics.

제습 사이클에서의 냉매-오일 혼합물의 유동특성 (Flow Characteristics of Refrigerant-oil Mixtures in a Dehumidifying Cycle)

  • 박세민;하삼철;신종민;이장호
    • 설비공학논문집
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2001
  • This paper deals with refrigerant-oil mixtures in a dehumidifying cycle. Two different oils such as Alkylbenzene(AB) and Polyol-esters(POE) lubricants are used for R134a to investigate the effect of miscibility on oil returnability. It was found that R134a/AB mixture had more unstable interface between oil and refrigerant than R134a/POE mixture. However, overall flow patterns of both refrigerant-oil mixtures were almost same. The minimum height of oil measured in the compressor was as high as twice of the least permissible height of oil in the compressor required to insure its reliability. Thus, it is considered that immiscible oil, i. e., AB for R134a can be used without causing oil returnability problem.

  • PDF