• 제목/요약/키워드: mixture experimental design

검색결과 300건 처리시간 0.024초

기체연료 엔진에서 공연비제어를 위한 흡입공기량 추정 (Estimation of Inlet Air Mass Flow for Air-Fuel Raito Control of Gaseous-Fuel Engines)

  • 심한섭;이강윤;선우명호;송창섭
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.131-139
    • /
    • 2001
  • Highly accurate control of the air-fuel ratio is important to reduce exhaust gas emissions of the gaseous-fuel engines. In order to achieve this purpose, inlet air mass flow must be measured exactly, and precise engine models are necessary to design engine control systems. In this paper, the effects of water vapor and gaseous fuel that change the air mass flow are studied. The effective air mass ratio is defined as the air mass flow divided by the mixture mass flow, and also it is applied to the estimation of the inlet air mass flow. The presence of the gaseous fuel and the water vapor in the mixture reduces the air partial pressure and the effective air mass ratio of the gaseous-fuel engines. The Experimental results for an LPG engine show that the estimation of the inlet ai mass flow based upon the effective air mass ratio is more accurate than that of the normal air mass flow.

  • PDF

The computational characteristics of thrust and propellant mixture ratio regulators for LRE using a propellant combination of methane and oxygen

  • 주대성;남궁혁준;조용호;김경호;우유철
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2002년도 제19회 학술발표대회 논문초록집
    • /
    • pp.18-18
    • /
    • 2002
  • A project where the TPUs(Turbo Pump Units) for 10tf-thrust oxygen/methane LRE (Liquid Rocket Engine) are under development is being implemented to include an experimental combustion chamber developed. In the process of it, we introduced the power-balanced engine cycles in order to substantiate concepts of the engine using the combinations of the propellants. Accordingly, the main engine parameters of nominal operating mode are resulted from the 1-Dcalculations and it is found that the regulators are needed for controlling the expected pressure levels in the characteristics of propellant mixture ratio and thrust supposing the regulator is set to analogue-typed one which is easy to develop.The technical requirements like the nominal flow rate, its deviations expected and the pressure difference In need helped the several main characteristics of regulators to be determine in this stage. Here, a dozen of deviation values in the main parameters related to engineoperation are taken into independent consideration and accepted to the results for additional regimes of the regulators.Finally, we can determine the scheme and the primary dimensions along with the calculation design of the spring acceptable for general configuration which can definitely forwarded to the autonomous tests of the aggregates, The obtained data in further will be used for successive refinement of operating mode of the engine.

  • PDF

스폴링이 발생한 콘크리트 포장의 내구성 영향인자 조사를 위한 실험적 연구 (Experimental Study to Investigate the Factors Affecting Durability of Spalled Cement Concrete Pavements)

  • 유태석;류성우;김진철
    • 한국도로학회논문집
    • /
    • 제20권2호
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : It is necessary to prevent premature failure of concrete pavements caused by durability problems. The purpose of this study was to find factors affecting the durability of concrete pavements, and suggest improvement methods for existing concrete mix design. METHODS : Factors influencing durability were derived from laboratory test data for common field failure conditions and main properties of concrete cores taken from the field. The improvement of concrete properties was investigated by evaluating the performance of existing and proposed mix proportion designs and curing methods. RESULTS : The compressive strength and the absorbing performance of the low Blaine cement and the high-strength mixture were better than those of the Type I cement. Wet curing showed better compressive strength, elastic modulus, coefficient of thermal expansion, and absorption performance than air curing or compound curing. As a result of comparing concrete cores collected in the field, the sections with good durability showed good performance in terms of resistance to chloride ion penetration, absorption, and initial absorption rate. CONCLUSIONS : The absorption performance was considered as a possible foactor affecting durability of cement concrete pavements as a result of field core tests. In order to improve the durability of the pavement concrete, it is necessary to improve the existing mixtures and curing methods.

Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing

  • Ko, Jae-Heung;Kim, Hyun-Tae;Han, Kyung-Hwan
    • Plant Biotechnology Reports
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Secondary walls have recently drawn research interest as a primary source of sugars for liquid biofuel production. Secondary walls are composed of a complex mixture of the structural polymers cellulose, hemicellulose, and lignin. A matrix of hemicellulose and lignin surrounds the cellulose component of the plant's cell wall in order to protect the cell from enzymatic attacks. Such resistance, along with the variability seen in the proportions of the major components of the mixture, presents process design and operating challenges to the bioconversion of lignocellulosic biomass to fuel. Expanding bioenergy production to the commercial scale will require a significant improvement in the growth of feedstock as well as in its quality. Plant biotechnology offers an efficient means to create "targeted" changes in the chemical and physical properties of the resulting biomass through pathway-specific manipulation of metabolisms. The successful use of the genetic engineering approach largely depends on the development of two enabling tools: (1) the discovery of regulatory genes involved in key pathways that determine the quantity and quality of the biomass, and (2) utility promoters that can drive the expression of the introduced genes in a highly controlled manner spatially and/or temporally. In this review, we summarize the current understanding of the transcriptional regulatory network that controls secondary wall biosynthesis and discuss experimental approaches to developing-xylem-specific utility promoters.

직접 분사식 가솔린 엔진을 이용한 성층 연소 특성에 관한 실험적 연구 (An Experimental Study on the Stratified Combustion Characteristics in a Direction Injection Gasoline Engine)

  • 이창희;이기형;임경빈;김봉규
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.121-126
    • /
    • 2006
  • A gasoline-fueled stratified charge compression ignition (SCCI) engine with both direct fuel injection and intake temperature and compression ratio was examined. The fuel was injected directly by using the high temperature resulting from heating intake port. With this injection strategy, the SCCI combustion region was expanded dramatically without any increase in NOx emissions which were seen in the case of compression stroke injection. Injection timing during the intake temperature was found to be an important parameter that affects the SCCI region width. The effect of mixture stratification and the effect of fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

연료 과농 환경에서 분사기 유량 통과 특성 연구 (Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions)

  • 서성현;임병직;김문기;안규복;김종규;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.9-12
    • /
    • 2010
  • 본 논문은 연료 과농 연소 환경 하의 이중 와류 동축형 분사기의 유량 통과 특성 파악을 위해 수행한 실험결과를 수록하였다. 액체산소와 케로신(Jet A-1)을 사용하여 연소시험을 수행하고 유량 통과 특성을 유량계수로 표현하였다. 유량계수 산출을 위해 유량, 압력, 온도를 계측하였다. 연료 분사기의 경우, 산화제 측 분사기 형상, 연소압, 혼합비에 관계없이 일정한 유량 계수 값을 보였다. 이에 반해 산화제 분사기는 연소압과 혼합비 변화에 영향을 받는 것으로 나타났다. 화염 형성 변화가 유량계수 변화에 특히 산화제 측에 영향을 주고 있음을 밝혔다.

  • PDF

CFT 구조용 초고강도 콘크리트의 충전성 평가를 위한 실험적 연구 (An Experimental Study on the Evaluation of the Compactness of Super-High Strength Concrete for CFT structure)

  • 이장환;황병준;김제섭;정근호;임남기;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.517-520
    • /
    • 2004
  • Concrete Filled steel Tube pipe structure is a rational type of structure that maximizes performance by combining the strong points of steel frame and concrete. In the structure, the confining effect of steel pipes increases the bearing power of infilled concrete and the strengthening of local bucking of steel pipes by infilled concrete increases the bearing power of members. and these result in the reduction of cross-sectional area and high transformation capacity. Moreover. the structure is economically efficient and widely applicable that it is used from super-high buildings to residential, business and apartment buildings. It enables the construction of multi-story buildings with long spans using columns of small cross-sectional area. In case of diaphragm, however, it is difficult to confirm the compactness of the closed inside of steel pipes. The present study examined the properties of super-high strength concrete over 80MPa by comparing it with 40MPa concrete through heat conductivity and length change tests based on a mixture ratio satisfying the mixture goal presented in the guideline for the design and construction of concrete-filled steel pipe structure. and evaluated the performance of super-high strength concrete according to the shape and size of the aperture ratio of diaphragm.

  • PDF

혼합물 실험계획법에 의한 머위 및 부원료의 혼합비율 최적화 (Optimization Mixture Ratio of Petasites japonicus, Luffa cylindrica and Houttuynia cordata to Develop a Functional Drink by Mixture Design)

  • 정해진;이경필;정헌식;김동섭;김한수;최영환;임동순;성종환;이영근
    • 생명과학회지
    • /
    • 제25권3호
    • /
    • pp.329-335
    • /
    • 2015
  • 호흡기계 질환에 효과적이라고 알려져 있는 식물성분들을 이용하여 기능성 음료를 개발하고자, 혼합물 실험계획법을 통해 혼합 최적 비율을 찾기 위한 실험을 수행하였다. 즉, 머위 30~70%, 수세미 10~30% 및 어성초 10~30%의 비율로 혼합하여 중앙점 반복을 포함하여 총 12개의 실험점을 설계하였고, 이 설계를 바탕으로 혼합물은 121℃에서 45분간 중탕 추출을 하여 anti-allergy activity 및 anti-microbial activity를 측정하였다. anti-allergy activity 효과는 Response surface와 trace plot을 보면 머위의 함량이 많을수록 좋은 효과를 나타내었고 수세미는 다소약한 영향을 미친다는 것을 알 수 있었다. 다중회귀분석 결과 상관계수 R2=82.10%이며 유의적인 회귀식으로 설명이 가능한 것으로 확인되었다. 따라서 최적비율은 머위 0.75, 수세미 0.14 그리고 어성초 0.11의 비율로 결정되었다. anti-microbial activity는 혼합비율에 따른 각 추출물들이 그람양성균인 Staphylococcus aureus (KCCM 40881), Staphylococcus epidermidis (KCCM 35494)에 대해서는 유효하나 그람음성균인 Escherichia coli (KCCM 11234), Pseudomonas aeruginosa (KCCM 11328)에 대해서는 미미하거나 효과가 나타나지 않았다.

Preliminary numerical study on hydrogen distribution characteristics in the process that flow regime transits from jet to buoyancy plume in time and space

  • Wang, Di;Tong, Lili;Liu, Luguo;Cao, Xuewu;Zou, Zhiqiang;Wu, Lingjun;Jiang, Xiaowei
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1514-1524
    • /
    • 2019
  • Hydrogen-steam gas mixture may be injected into containment with flow regime varying both spatially and transiently due to wall effect and pressure difference between primary loop and containment in severe accidents induced by loss of coolant accident. Preliminary CFD analysis is conducted to gain information about the helium flow regime transition process from jet to buoyancy plume for forthcoming experimental study. Physical models of impinging jet and wall condensation are validated using separated effect experimental data, firstly. Then helium transportation is analyzed with the effect of jet momentum, buoyancy and wall cooling discussed. Result shows that helium distribution is totally dominated by impinging jet in the beginning, high concentration appears near gas source and wall where jet momentum is strong. With the jet weakening, stable light gas layer without recirculating eddy is established by buoyancy. Transient reversed helium distribution appears due to natural convection resulted from wall cooling, which delays the stratification. It is necessary to concern about hydrogen accumulation in lower space under the containment external cooling strategy. From the perspective of experiment design, measurement point should be set at the height of connecting pipe and near the wall for stratification stability criterion and impinging jet modelling validation.

역산문제 방법을 적용한 제네릭 의약품 개발 프로세스의 강건 설계 (Integrating Inverse problem to robust design for a generic drug development process)

  • ;신상문;정성훈
    • 품질경영학회지
    • /
    • 제39권3호
    • /
    • pp.365-376
    • /
    • 2011
  • Robust design (RD) has emerged as a key feature in process design and development for more than twenty years. Many researchers and industrial engineers around the world have invested their intensive efforts to develop and apply RD in many fields in order to improve quality of output products. However, there is also room for improvement. The primary objective of this research is to determine "robust formulation" of a medicine by checking its gelation index. In order to achieve this target, based on the nature of problem, at first, a customized experimental format is designed for obtaining data. Second, time-depended responses based models are developed by the proposed inverse problem (IP) methodology. Third, an RD model based on mean square error (MSE) concept is introduced for time-depended responses. Finally, the proposed approach is illustrated by a case study while comparing obtained results to the response surface methodology (RSM) approach.