• Title/Summary/Keyword: mixing ratio

Search Result 3,232, Processing Time 0.024 seconds

Study on the Undrained Strength Characteristics of Fiber Mixed Clay (섬유혼합 점토의 비배수 강도 특성에 대한 연구)

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.382-387
    • /
    • 1998
  • Triaxial compression tests were run to study on the undrained strength characteristics of fiber mixed kaolin clay(Hadong). The influence of various test parameters such as amount and aspect ratio(ratio of length to diameter) of fiber, confining stress was also investigated. Test results showed that the increase in aspect ratio was increased in deviator stress at failure, but no effect on pore water pressure at failure. Deviator stress at failure was also increased at 0.5% mixing ratio(weight fraction of fiber to that of soil solid) of fiber but it was, thereafter, decreased and wits reached to constant after 2% mixing ratio. On the contrary, Pore water pressure at failure was increased as mixing ratio of fiber was greater than 1%. Deviator stress and pore water pressure of both clay and fiber mixed clay(FMC) at failure were increased as confining stress was increased. Deviator stress of FMC at failure was about 10% larger than that of clay, but pore water pressure of FMC at failure was almost similar to that of clay.

  • PDF

The Study on Properties of Mortar with Copper Smelting Slag (동제련 슬래그를 혼입한 모르타르의 강도 특성 연구)

  • Park, Cho-Bum;Ji, Suk-Won;Seo, Chee-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.263-268
    • /
    • 2000
  • Recently, the recycling of the by-products was attempted to various fields. One of the major industry, the copper manufacturing industry produced a lot slags. in this study, the copper smelting slag was used to use practically application for the aggregate of concrete. To find the optimum mixing ratio of mortar with the copper smelting slag as substitution for sand, the mixing ratio was increased 1:2 to 1:5 step by step and every mixture was contained 5 steps sand substitutive ratio. The substitutive ratio of sand was increased 25% st대 by step from 0% to 100%. The result of this study was shown as follows. 1. In the every mixture, as the substitutive ratio was increased, the flow was decrease 3.64% from 18cm, and the unit content weigth was increased 5.5% in average. 2. The property of the strength was judged that it was more affected W/C and mixing ratio than the copper smelting slag.

  • PDF

Selection of Mixing Ratio for Preparation of Mixed Vegetable Juice (과채쥬스 제조를 위한 혼합조건의 선정)

  • 이규희;고영수;최희숙;김우정
    • Korean journal of food and cookery science
    • /
    • v.11 no.2
    • /
    • pp.113-118
    • /
    • 1995
  • A preferable mixing ratio of a six-vegetable juice was suggested in this study. The vegetables used for preparation of mixed vegetable juice were carrot(Ct), cabbage(Cg), pear(Pr), cucumber(Cr), celery (Cy) and dongchimi(Di). The characteristics of pH, titratible acidity, reducing sugar, turbidity, solids, color and acceptability were compared to determine the mixing ratio. The vegetables showed a wide ranHe of pH of 3.70-6.01, acidity of 28.92 uv~74.40 nd and reducing sugar of 1.20ft~ 12.69fo. Celery juice showed the higest suspension stability and "b" value and the lowest values in Hunter "L" and "a" values among the 6 vegetable juice. The preferable mixing ratio of two-vegetable juice selected were Ct-Di(1 : 4), Cg-Pr(1 : 3) and Cr-Cy(3 : 1). From the various ratio of the three of biary mixtures of Cg-Pr(1 : 3): Ct-Di(1 : 4): Cr-Sy(3 : 1), two ratio of 5.0 : 2.5 2.5(V-6A) and 6.0 : 2.0 : 2.0(V-6B) were suggested as the most prefered six-vegetable juice. Pear, dongchimi and cucumber were found to be influential on the preference. The pH and titratible acidity of the two juices with different ratios were in the range of 4.92~4.98 and 36.g∼37.4 ml, respectively.

  • PDF

Mechanical Characteristics for Pulp Molds Made of ONP and OCC with Different Mixing Ratio (고지배합비율에 따른 펄프몰드 물성 변화 연구)

  • Park, In-Sik;Kim, Jae-Nung;Kim, Dae-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.04a
    • /
    • pp.285-297
    • /
    • 2007
  • As the demands of environment protection increase, the pulp mold container is developed to substitute for the plastic cushion materials like EPS(expanded poly styrene). The water-absorbing ratio, tensile strength and compressive strength of pulp mold are important factors to evaluate its shock absorbing characteristics. The study was performed to investigate the effects of the mechanical property changes on the various conditions of temperature and relative humidity for pulp mold containers made of mixed materials on ONP(old newspaper) and OCC(old corrugated container). This study also is evaluated the optimized mixing ratio of materials for making pulp mold by analyzing the changes of physical properties according to a various procured temperature and relative humidity conditions. The results show that the water absorption ratio of sample increased significantly, and tensile strength decreased $20{\sim}30%$, compressive strength decreased $10{\sim}20%$ by increasing relative humidity condition. And the results show that the ONP 50% and OCC 50% was optimized mixing ratio according to the samples.

  • PDF

Effect of Mixing Ratio of n-heptane Fuel on the Combustion Characteristics of n-butanol Fuel (n-heptane 연료 혼합비에 따른 n-butanol 연료의 연소 특성)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.21-26
    • /
    • 2015
  • This study was performed to provide the information of the combustion characteristics of n-butanol fuel in accordance with the n-heptane fuel mixing ratio. The closed homogeneous reactor model was used for the analysis. The analysis conditions were set to 800 K of the initial temperature, 20 atm of initial pressure and 1.0 of equivalence ratio. The results of analysis were compared in terms of combustion temperature, combustion pressure, CO, Soot and $NO_X$ emissions. The results of combustion and exhaust emission characteristics showed that ignition delay was decreased and the combustion temperature was increased as the n-heptane mixing ratio was increased. Also, the carbon monoxide(CO) was slightly decreased however, the soot and nitrogen oxides($NO_X$) increased a little in accordance with the n-heptane fuel mixing ratio. In addition, the pressure difference was almost the same in any conditions.

Co-combustion Characteristics of Mixed Coal with Anthracite and Bituminous in a Circulating Fluidized Bed Boiler (순환유동층 보일러에서 무연탄-유연탄의 혼합연소 특성)

  • Jeong, Eui-Dae;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.2
    • /
    • pp.70-77
    • /
    • 2010
  • This study investigated the characteristics of co-combustion of mixed anthracite (domestic and Vietnam) and bituminous coal (Sonoma, Australia) at circulating fluidized bed boiler in Donghae thermal power plant when mixing ratio of bituminous coal is variable. Co-combustion of bituminous coal contributes to improvement in general combustion characteristics such as moderately retaining temperature of furnace and recycle loop, reducing unburned carbon powder, and reducing discharge concentration of NOx and limestone supply owing to improvement in anthracite combustibility as the mixing ratio was increased. However, bed materials were needed to be added externally when the mixing ratio exceeded 40% because of reduction in generating bed materials based on reduction in ash production. When co-combustion was conducted in the section of 40 to 60% in the mixing ratio while the supplied particles of bituminous coal was increased from 6 mm to 10 mm, continuous operation was shown to be possible with upper differential pressure of 100 mmH2O (0.98 kPa) and more without addition of bed materials for the co-combustion of mixed anthracite and bituminous coal (to 50% or less of the ratio) and that of domestic coal and bituminous coal (to 60% of the ratio).

  • PDF

Methane Production Potential of Food Waste and Food Waste Mixture with Swine Manure in Anaerobic Digestion

  • Islam, Mohammad Nazrul;Park, Keum-Joo;Yoon, Hyung-Sun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.100-105
    • /
    • 2012
  • Purpose: Methane production potential in aerobic digestion was assessed according to feed to inoculum (F/I) ratio for food waste only, and mixing ratio of two materials for food waste and swine manure to give a basic data for the design of anaerobic digestion system. Methods: Anaerbic digestion test was performed using a lab scale batch reactor at $35^{\circ}C$ for six different feed to inoculum (F/I) ratios (0.50, 0.72, 1.14, 1.50, 2.14 and 3.41), three food waste to swine manure ratios (100:0, 60:40 and 40:60) with two different loading concentrations (10g VS/L and 30g VS/L). Results: For food waste only, the highest biogas yield of 1008 mL/gVS was obtained at 0.50 of F/I. For the co-digestion of food waste and swine manure mixture, the highest biogas yield of 1148 mL/gVS was obtained at a mixing ratio of 40:60 with loading concentration of 10g VS/L. Conclusions: F/I ratio for the food waste only, mixing ratio of food waste and swine manure, and co-substrate loading rate affected the biogas production rate. For the low loading rate, there was not so much difference according to the mixing ratio of food waste and swine manure, but for the high loading rate higher biogas yield was acquired for the co-digestion of food waste and swine manure than for the food waste alone (mixing ratio, 100:0).

An Experimental Study on Engineering Properties of Self-healing Mortar according to PCC(Powder Compacted Capsule) Size and Mixing Ratio (PCC(Powder Compacted Capsule) 크기 및 혼입율에 따른 자기치유 모르타르의 공학적 특성에 관한 실험적 연구)

  • Jae-In, Lee;Chae-Young, Kim;Se-Jin, Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.514-522
    • /
    • 2022
  • In this study, as part of a study to improve the self-healing performance of concrete structures by applying self-healing capsules made of cementitious materials to cement composite materials, the engineering characteristics of mortars according to PCC(Powder Compacted Capsule) size and mixing ratio were compared and analyzed. For this, fluidity, compressive strength, reload test, carbonation, ultrasonic velocity, and water permeability characteristics were measured according to PCC size and mixing ratio of mortar. As a result of the measurement, the fluidity and compressive strength increased as the mixing ratio of PCC increased, and in the case of the load reload test, the healing ratio increased as the mixing ratio of PCC increased in the 03PC formulation. In the case of water permeability test, it was found that when PCC was used, the reduction ratio of water flow was up to 35 % higher than that of Plain, and when PCC with a size of 0.3 to 0.6 mm was mixed with 15 %, it was found to be effective in improving the crack healing ratio of the mortar.

The Characteristics on Arc Pressure Distribution of TIG Welding with Shield Gas Mixing Ratio (TIG 용접에서의 실드 가스 혼합비에 따른 아크 압력분포 특성)

  • Oh Dong-Soo;Kim Yeong-Sik;Cho Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.41-47
    • /
    • 2005
  • Arc pressure is one of important factors in understanding physical arc phenomena. Especially it affects on the penetration, size and shape of TIG welding. Some researches were reported on the effect of arc pressure in low and middle current region. But there are not any research in high current region. The purpose of this study is to investigate the arc pressure distribution with mixing ratio of shield gas such as Ar and He gases. A Cu block with water cooling was specifically designed and used as an anode electrode in order to measure the arc pressure in high current region. Then, the arc pressure distribution was measured with change in welding current and mixing ratio of shield gases. The arc force was obtained by numerically integrating the measured results. As the results, it was shown that the arc pressure was concentrated at the central part of the arc in middle and high current regions when a pure Ar gas was used. In case of Ar + He mixing gas, the arc pressure was much lower than that of pure Ar gas. In addition, it was widely distributed to radial direction.

Effect of Mixing Ratio of Active Material on the Wettability in Lithium-Ion Battery Using Lattice Boltzmann Method (격자 볼츠만법을 이용한 리튬이온전지의 활물질 혼합비에 대한 함침성의 영향)

  • Jeon, Dong Hyup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • The electrolyte wetting phenomena occurring in the electrode of lithium-ion battery was studied using lattice Boltzmann method (LBM). Recently, lithium-ion batteries are being mixed with small particles on the active material to increase the capacity and energy density during the electrode design stage. The change to the mixing ratio may influence the wettability of electrolyte. In this study, the changes in electrolyte distribution and saturation were investigated according to various mixing ratios of active material. We found that the variations in mixing ratio of active material affect the wetting mechanism, and result in changes to the wetting speed and wettability of electrolyte.