• Title/Summary/Keyword: mixing proportion

Search Result 238, Processing Time 0.032 seconds

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.89-98
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 200mm of flow value and above 300kgf/$cm^2$ of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary Portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~15% AG.

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

Engineering Characteristics Assessment of Rapid Set Controlled Low Strength Material for Sewer Pipe Using Excavated Soil (굴착토를 활용한 속경성 유동성 채움재의 공학적 특성 평가)

  • Kim, Young-Wook;Lee, Bong-Chun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.450-457
    • /
    • 2020
  • In this study, engineering characteristics such as flowability, segregation and compressive strength by age to derive fast hardening material mixing proportion using excavated soil. And based on optimal mixing proportion, field simulation experiment conducted in laboratory to examine the effectiveness of the method such as kelly ball drop test and soil penetration test for reviewing the following process. As as a result of evaluation, in case of kelly ball drop test and soil penetration test were securing the following process initiation time 3 hours after place CLSM. As results of these assessments, kelly ball drop test and soil penetration test were applicable for revewing following process in construction field besides unconfined compressive strength method.

Effects of the Proportions of Wall Materials on the Characteristics of Spray Dried Vinegar (부형제의 혼합비에 따른 분말식초의 품질 특성)

  • 황성희;홍주헌;정용진;윤광섭
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.189-193
    • /
    • 2002
  • This study was conducted to evaluate the quality and the quantity for manufacturing vinegar powder using spray drying. The $\beta$-cyclodextrin(CD) and gum arabic(GA) were used as well materials and the mixing ratio of CD and GA was ranged from 10:0 to 0:10. The moisture content of the vinegar powder of 2.5 of CD and 7.5 of GA was lowest among the other mixing ratios. At this proportion, the titratable acidity was highest as it had much included vinegar. The heat stability was not varied much with mixing ratio. However the stability of heat was maintained. Further the water absorption of powder was comparatively low. The manufactured powder vinegar shape was smooth round particles and stable structure by SEM and the particle size was small enough to form capsulation. In sensory evaluation, under these conditions the sourness was highest at 3.5. Therefore, the optimal mixing ratio at 2.5 of CD and 7.5 of GA in wall material was selected.

Mixing and Strength Properties of 150MPa Ultra High Strength Concrete (150MPa 초고강도 콘크리트 배합 및 강도발현 특성)

  • Ahn, Jong-Mun;Kang, Hoon;Kim, Jong-Keun;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.373-376
    • /
    • 2008
  • Ultra High Strength Concrete(UHSC) is necessary a clear presentation about mechanical property that is different from normal strength concrete and an evaluation of serviceability of high rise building which is used ultra high strength concrete. To mixing ultra high strength concrete with $f_{ck}$=150MPa pre-mix cement were manufactured and experimental study were conducted to evaluated on the mixing properties and compressive strength with major variables as unit cement contents, water-binder ratio and type of pre-mix cement. As a test result, it is shown that the concrete mixing time is required about 5$^{\sim}$6 minute untill the each materials(ordinary portland cement, silica fume, blast-furnace slag powder and anhydrite) are revitalized enough. A slump flow of fresh concrete are shown about 700$^{\sim}$750mm with proper viscosity. And average value of concrete compressive strength are shown about 77% in 7days, 87% in 14days and 102% in 56days for 28days of concrete material age. From this experimental study, a proper mixture proportion of pre-mix cement are recommended about 54$^{\sim}$59% OPC, 25$^{\sim}$30% blast-furnace slag powder and 10$^{\sim}$15% silica fume for mix the ultra high strength concrete with $f_{ck}$=150MPa.

  • PDF

Fundamental Study of Manufacture Possibility and Composition Ratio of Sludge-Particle Board (슬러지-파티클 보드의 제조(製造) 가능성(可能性) 및 구성비율(構成比率)에 관한 기초연구(基礎硏究))

  • Lee, Phil-Woo;Yoon, Hyoung-Un;Kim, Dae-Jun;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 1993
  • The aim of this research was to manufacture sludge-particle board using paper sludge with wood particle and to investigate physical and mechanical properties of various sludge-particle boards, fabricated with ratios of sludge to particle of 10 to 90, 20 to 80, 30 to 70, 40 to 60 and 50 to 50(oven dry weight based). Sludge-particle boards were manufactured by urea-formaldehyde resin, 0.8 target specific gravity, and 10mm thickness. It was possible to manufacture sludge-particle board as the same processing in the present particleboard manufacturing system. This sludge-particle board have different properties as composition ratios of sludge and particle. And sludge-particle board made from 10 percent to 20 percent of sludge mixing ratio have similar mechanical properties compared with control particleboard. Especially, the sludge-particle board made from 10 percent to 40 percent mixing ratios of sludge have superior to control particleboard in internal bond, screw withdrawal holding strength and modulus of elasticity. In the case of dimensional stability, water absorption was increased and thickness swelling was decreased as increased with sludge mixing proportion. The sludge-particle board made of different mixing ratios of our laboratory design was able to concluded that there is possibility of partial substitution of wood particle materials.

  • PDF

Leaching of Arsenic in Soils Amended with Crushed Arsenopyrite Rock

  • Lee, Kyosuk;Shim, Hoyoung;Lee, Dongsung;Yang, Jae E.;Chung, Dougyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.113-119
    • /
    • 2014
  • Arsenic and its compounds which is one of the most toxic elements that can be found naturally on earth in small concentrations are used in the production of pesticides, herbicides, and insecticides. Most arsenic that cannot be mobilized easily when it is immobile is also found in conjunction with sulfur in minerals such as arsenopyrite (AsFeS), realgar, orpiment and enargite. In this investigation we observed the leaching of arsenic in soils amended with several levels of gravel size of arsenopyrite collected from a road construction site. Soil and gravel size of arsenopyrite were characterized by chemical and mineralogical analyses. Results of XRF analysis of arsenopyrite indicated that the proportion of arsenate was 0.075% (wt $wt^{-1}$) while the maximum amount of arsenic in soil samples was 251.3 mg $kg^{-1}$. Cumulative amounts of effluent collected from the bottom of the soil column for different mixing rate of the gravel were gradually increased where proportion of the gravel mixed was greater than 70% whereas the effluent was stabilized to the maximum after approximately 45 pore volumes of effluent or greater were collected. The arsenic in the effluent was recovered from the soil columns in which the proportion of arsenopyrite gravel was 60% or greater. The total amount of arsenic recovered as effluent was increased with increasing proportion of gravel in a soil, indicating that the arsenic in the effluent was closely related with gravel fraction of arsenopyrite.

A Study on Rheological Properties of Cement Paste using Expansive Additives by Kind & Replacement Ratio (팽창재 종류 및 치환율에 따른 시멘트 페이스트의 레올로지 특성)

  • Park, Chun-Young;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • To improve concrete tensile strength and bending strength, New plan that have more economical and simple manufacture process is groped. By an alternative plan, chemical pre-stressed concrete is presented. In this study, we analyzed the rheological properties of cement paste with the kind and replacement ratio of k-type CSA type expansive additives that is used mainly in domestic. and we suggested that the algorithm of a mixing plan in the chemical pre-stressed concrete and from this, we presented the basic report for the right mixing plan. From the results, Flow increased more or less according to use of expansive additives. This phenomenon was observed by increasing paste amount that shows as substitution for expansive additives that specific gravity is smaller than that of cement. As linear regression a result supposing paste that mix expansive additives by Bingham plastic fluid. The shear rate and shear stress expressed high interrelationship. therefore, flow analysis of quantitative was available. The plastic viscosity following to replacement ratio of expansive additives is no change almost, the yield value is decreased in proportion to the added amount of expansive additives. Through this experiment, we could evaluate rheological properties of cement paste using the expansive additives. Hereafter by an additional experiment, we must confirm stability assessment of material separation by using the aggregate with the kind and replacement ratio of expansive additives.

Fundamental Study on Optimum Mixing Proportion of Cement Concrete Pavement using Recycled Aggregate (순환골재를 활용한 포장용 시멘트콘크리트의 최적배합 도출을 위한 기초 연구)

  • Kim, Sueng Won;Kim, Yong Jae;Lee, Jang Yong;Lee, Hak Yong;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.105-113
    • /
    • 2016
  • OBJECTIVES : This study is to develop the optimum mixing proportions for cement concrete pavement with using recycled aggregates. METHODS : The mixture varied recycled coarse aggregates content from 50 % to 100 % to replace the natural coarse aggregates by weight. Tests for fundamental properties as a cement concrete pavement were conducted before and after hardening of the concrete. RESULTS : It was found that the variation in the amount of the recycled aggregate affected the compressive and flexural strength development, as well as the chloride ion penetration resistance. As the amount of the recycled aggregate content increased the compressive and flexural strength and the resistance to chloride ion penetration decreased. However, the resistance to freeze-thaw reaction was affected significantly. In addition, the gradation of the aggregate became worse and hence so did the coarseness factor as the recycled aggregate amount increased. CONCLUSIONS : The fundamental properties of the concrete with recycled aggregate does not seem to be appropriate when the recycled aggregate quality is not guaranteed up to a some level and its replacement ratio is over 50%. The optimized gradation of the aggregates should also be sought when the recycled aggregate is used for the cement concrete pavement materials.

Experimental Study on the Characteristics of Polymer-modified Lightweight Aggregate Concrete Using SBR Latex (SBR Latex를 이용한 폴리머 개질 경량콘크리트의 특성에 관한 실험적 연구)

  • Ahn, Nam-Shik;Won, Dong-Min;Park, Noh-Hyun;Kim, Hee-Cheul;Kim, Kwan-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.61-72
    • /
    • 2009
  • As a trend of construction has become high-rise and larger, it is necessary to reduce the self-weight of structures and buildings. One of the most effective methods to reduce the self-weight of structures and buildings is to use the lightweight aggregate concrete. To complement the strength of the lightweight aggregate concrete, polymer was added to concrete's mixing. In this study, experiments to make the moderate mixing proportion of polymer modified lightweight concrete were performed. Also the hardened concrete tests were performed to investigate the physical characteristics of the polymer-modified lightweight aggregate concrete. As a result, the flexural strength was increased by a small quantity of SBR Latex. Based on the test results the estimating equation was proposed through the regression analysis.

  • PDF