• Title/Summary/Keyword: mixing coefficient

Search Result 433, Processing Time 0.03 seconds

Development and validation of a fast sub-channel code for LWR multi-physics analyses

  • Chaudri, Khurrum Saleem;Kim, Jaeha;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • A sub-channel solver, named ${\underline{S}}teady$ and ${\underline{T}}ransient$ ${\underline{A}}nalyzer$ for ${\underline{R}}eactor$ ${\underline{T}}hermal$ hydraulics (START), has been developed using the homogenous model for two-phase conditions of light water reactors. The code is developed as a fast and accurate TH-solver for coupled and multi-physics calculations. START has been validated against the NUPEC PWR Sub-channel and Bundle Test (PSBT) database. Tests like single-channel quality and void-fraction for steady state, outlet fluid temperature for steady state, rod-bundle quality and void-fraction for both steady state and transient conditions have been analyzed and compared with experimental values. Results reveal a good accuracy of solution for both steady state and transient scenarios. Axially different values for turbulent mixing coefficient are used based on different grid-spacer types. This provides better results as compared to using a single value of turbulent mixing coefficient. Code-to-code evaluation of PSBT results by the START code compares well with other industrial codes. The START code has been parallelized with the OpenMP algorithm and its numerical performance is evaluated with a large whole PWR core. Scaling study of START shows a good parallel performance.

Mixing Analysis of Floating Pollutant Using Lagrangian Particle Tracking Model (Lagrangian 입자추적모형을 이용한 부유성 오염물질의 혼합해석)

  • Seo, Il Won;Park, Inhwan;Kim, Young Do;Han, Eun Jin;Choo, Min Ho;Mun, Hyun Saing
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.383-392
    • /
    • 2013
  • In this research, mixing behavior of the floating pollutant such as oil spill accidents was analyzed by studying the advection-diffusion of GPS floaters at water surface. The LPT (Lagrangian Particle Tracking) model of EFDC (Environmental Fluid Dynamics Computer Code) was used to simulate the motion of the GPS floater tracer. In the field experiment, 35 GPS floaters were injected at the Samun Bridge of Nakdong River. GPS floaters traveled to downstream about 700 m for 90 minutes. The field data by the GPS floater experiments were compared with the simulation in order to calibrate the parameter of LPT model. The turbulent diffusion coefficient of LPT model was determined as $K_H/hu^*$ = 0.17 from the scatter diagram. The arrival time of peak concentration and transverse diffusion from the simulation results were similar with the experiments from the concentration curves. Numerical experiments for anticipation of damage from floating pollutant were conducted in the same reach of the Nakdong River and the results show that the pollutant cloud transported to the left bank where the Hwawon pumping station is located. For this reason, it is suggested that the proper action should be needed to maintain the safety of the water withdrawal at the Hwawon pumping station.

Increase of strength and freezing-thawing resistance of porous concrete by Silica-fume (실리카흄을 사용(使用)한 투수(透水)콘크리트의 강도(强度) 및 동결융해저항성(凍結融解抵抗性))

  • Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • Existing porous concrete has problems with reduction of strength due to freezing and thawing and exfoliation of aggregate at joints. In this study, a method for increasing strength and durability of porous concrete by using fine aggregate, silica-fume and high-range water-reducing agent was proposed by laboratory tests. Mixing ratio between silica-fume (10%) and fine aggregate (0%, 7%, 15%) was selected as a major test factor, and laboratory tests for compressive strength, flexural strength, permeability coefficient, porosity, freezing and thawing were conducted. Compressive strength and flexural strength were increased as the mixing ratio of fine aggregate was increased. However, permeability and freezing-thawing resistance were decreased due to reduction of porosity. Therefore, the ratio of fine aggregate should be limited to increase strength and durability of the porous concrete, while the mixing ratio of silica-fume should be over 10%.

A Study on the Characterization of Geotechnical Properties in Permeable Barriers Mixture of Bentonite, Loess, and Sand (벤토나이트·황토·모래를 혼합한 투수벽체의 지반공학적 특성에 관한 연구)

  • Chun, Byung-Sik;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.4
    • /
    • pp.5-12
    • /
    • 2005
  • In this study, the geotechnical applicability of permeable barriers that could filter the leachate from a landfill was evaluated. Specimens were cast from sand, loess and bentonite according to the specific weight ratios of them. A series of experiments are performed to determine the unconfined compressive strength and permeability of various mixing ratio of bentonite, loess, and sand. From the laboratory test, optimum mixing ratio that satisfied the regulations of unconfined compressive strength($5kgf/cm^2$) and coefficient of permeability ($10^{-3}{\sim}10^{-4}cm/sec$) in landfill was found when the weight ratio of sand and loess was 8:2 with 2% of bentonite. Using the laboratory test data and in situ test results, the applicability of the wall will be tested for various conditions.

  • PDF

Dynamic Characteristics of External loop Air-Lift Reactor (외부 순환 공기리프트 반응기의 동특성)

  • 강귀현;김춘영정봉우
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.59-65
    • /
    • 1992
  • Hydrodynamics and mixing characteristics such as circulation time, mixing time, circulation velocity and axial dispersion coefficient were investigated using highly viscous pseudoplastic solutions of carboxymethyl cellulose(CMC) in an external circulation loop air-lift reactor with 13$\ell$ working volume. The superficial gas velocity was changed from 1.9 to 6.2cm/s and CMC concentration from 0 to 1.0wt%. The theoretical model based on the pressure balance is developed mathematically to predict liquid circulation velocity. Gas hold-up, circulation velocity and axial dispersion coefficient of liquid phase increased with increasing gas velocity and decreased slightly with increasing liquid viscosity. Mixing time and circulation time decreased with increasing gas velocity and increased with increasing liquid viscosity. Experimental data on liquid circulation velocity were in good agreement with the predicted values.

  • PDF

Influence of the Mechanical Properties on Drapability in the Peach Skin-like Finished Fabrics (피치스킨 가공직물의 역학적 특성이 드레이프성에 미치는 영향)

  • Choi, Jeong-A;Sung, Su-Kwang;Kwon, Oh-Kyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.4
    • /
    • pp.684-695
    • /
    • 1995
  • The purpose of this study was to investigate the influence of the mechanical properties on drapability in the peach skin-like finished fabrics. For this study, the samples used were 50 kinds of peach skin-like finished fabrics. The mechanical properties such as tensile, shearing, bending, compressional, surface characteristic values, thickness and weight were measured with a KES-F system and drupe coefficient by drape tester. The relationship between the characteristic values and drape coefficicients of the peach skin-like finished fabrics results were obtained. 1. Peach skin-like finished fabric had $\pm$2o range of shearing, bending, compression, surface. properties, thickness and weight as compared with Japanese women's thin fabrics. The characteristic mixing values were better with the values of WC/T, W/T, etc. as compared with that of japanese women's thin fabrics. Accordingly, the peach skin-like finished fabrics had a little volume, excellent hanging and drapability as compared with japanese women's thin fabrics. 2. The drape coefficient of peach skin-like finished fabric had a high level of correlation between 2HB, G, WC, MIU, WT, MMD, 2HG, RT, W, B etc. of the mechanical properties. The blocked properties that contributed to the drape coefficient of peach skin-like finished fabrics were in the order of the bending> tensile> thickness> weight properties. This drape coefficients(DC) were found by measuring the mechanical properties according to the obtained regress on equate on. DC=99.0179+17.9023 log G -17.0543 log 2HG5+17.2104 log 2HG+35.7685 log 2HB+ 4.6082 log B-30.5906 log T+4.2308 log W 3. The contribution to the drape coefficient of the characteristic mixing values of peach skin-like finished fabric was in the order of > 2HB/W> 2HB/B> B/W The drape coefficients were found by measuring the characteristic mixing values according to the obtained regression equation. 4. The drape coefficients of peach skin-like finished fabrics were influenced by the differences between the bending of warp direction, bending of weft direction, shearing etc which in turn determine the level of hanging. The regression equation was as follows; 5. The drape coefficients of peach skin.like finished fabrics had a highly positive correlation with the node index. It has an negative correlation with number of nodes.

  • PDF

Heat Transfer Coefficients of Individual Rows for Fin-and-Tube Heat Exchangers (휜-관 열교환기의 열별 열전달 계수 측정)

  • Shin, T.R.;Lee, E.R.;Kim, N.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1034-1039
    • /
    • 2004
  • The row-by-row heat transfer characteristics of fin-and-tube heat exchangers having wavy fins were experimentally investigated. Three samples having different rows (one, two and three) were tested. Results show that the heat transfer coefficient is strongly dependent on the tube row. The heat transfer coefficient of the first row is larger than those of second or third rows. However, the difference decreases as the Reynolds number increases. The heat transfer coefficients of the second and the third row are approximately the same, probably due to increased mixing of bulk flow by wavy channels. Although samples have different tube row, the heat transfer coefficients of same row are approximately the same.

  • PDF

Performance and Heat Transfer Characteristics of Heat Pump System Using Refrigerant Mixtures (혼합냉매를 사용한 열펌프 시스템의 성능과 열전달 특성)

  • Kim, T.S.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.360-369
    • /
    • 1992
  • A heat pump system is constructed to evaluate its performance and heat transfer characteristics with mixtures of R22/R142b as working fluids. The heat transfer in the evaporator and the overall performance are measured and analyzed in terms of the compositions and relevant variables. Possibility of capacity modulation by changing composition is observed without degradation of heat transfer coefficients and coefficient of performance. The cooling capacity is varied continuously within 200 percent based on minimum capacity at constant compressor speed. For similar cooling capacity, COP is improved by mixing two refrigerants and shows maximum value at 60% mass fraction of R22. Average heat transfer coefficients of mixtures decrease in comparison with pure refrigerants at similar cooling capacity and mass flow rate. However, the overall heat transfer coefficients decrease moderately. A cycle simulation is performed in order to manifest the advantages of using refrigerant mixtures, considering experimentally observed heat transfer characteristics.

  • PDF

A Study of Chloride Diffusion Coefficient and Microstructure of High Fluidity Concrete Using Limestone Powder (석회석 미분말을 활용한 고유동 콘크리트의 염소이온 확산계수와 미세공극에 관한 연구)

  • Choi, Yun-Wang;Jeong, Jae-Gwon;Kim, Kyung-Hwan;Ha, Sang-Woo;Ryu, Deuk-Hyun;Oh, Sung-Rok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.199-200
    • /
    • 2010
  • This paper was estimated the diffusion coefficient through the chlorine ion diffusion coefficient of the high fluidity concrete using the limestone powder. Also, the micro void of high fluidity concrete examined according to the mixing ratio of the limestone powder by the mercury intrusion porosimetry.

  • PDF

A Study of the Characteristic of Friction Coefficient Variation for the External Environment (외부환경에 따른 마찰재의 마찰계수 변화 특성에 대한 연구)

  • Lee, Girhyoung;Lee, Dongkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.601-607
    • /
    • 2015
  • The friction material for automobile is manufactured by mixing several composites to stop the running vehicles. Friction characteristics are changed significantly according to the relative amount of the base materials. However, difference of friction coefficient is sometimes measured at the test for the same friction material. Nevertheless, the study for solving these problems is insufficient. In this paper, the friction tests were carried out by changing the external environment and processing condition when the main ingredients are fixed and also evaluated how the friction coefficient changes. The variables are cooling air speed, humidity (Relative humidity and Absolute humidity), scorching time, soaking time and pad area. And it is analytically considered which environmental factor mainly affects the characteristic of friction coefficient variation by experiment. It is expected that the results from this study can be very useful as a database for development of the friction material.