• Title/Summary/Keyword: mixed-mode crack

Search Result 205, Processing Time 0.034 seconds

Computation of 2-D mixed-mode stress intensity factors by Petrov-Galerkin natural element method

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.589-603
    • /
    • 2015
  • The mixed-mode stress intensity factors of 2-D angled cracks are evaluated by Petrov-Galerkin natural element (PG-NE) method in which Voronoi polygon-based Laplace interpolation functions and CS-FE basis functions are used for the trial and test functions respectively. The interaction integral is implemented in a frame of PG-NE method in which the weighting function defined over a crack-tip integral domain is interpolated by Laplace interpolation functions. Two Cartesian coordinate systems are employed and the displacement, strains and stresses which are solved in the grid-oriented coordinate system are transformed to the other coordinate system aligned to the angled crack. The present method is validated through the numerical experiments with the angled edge and center cracks, and the numerical accuracy is examined with respect to the grid density, crack length and angle. Also, the stress intensity factors obtained by the present method are compared with other numerical methods and the exact solution. It is observed from the numerical results that the present method successfully and accurately evaluates the mixed-mode stress intensity factors of 2-D angled cracks for various crack lengths and crack angles.

Analysis of Mixed-mode Crack Propagation by the Movable Cellular Automata Method

  • Chai, Young-Suck;Lee, Choon-Yeol;Pak, Mikhail
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.66-70
    • /
    • 2008
  • The propagation of a mixed-mode crack in soda-lime silica glass is modeled by movable cellular automata (MCA). In this model, a special fracture criterion is used to describe the process of crack initiation and propagation. The results obtained using the MCA criterion are compared to those obtained from other crack initiation criteria, The crack resistance curves and bifurcation angles are determined for various loading angles. The MCA results are in close agreement with results obtained using the maximum circumferential tensile stress criterion.

Determination and Applications of U and K$_{op}$ for Crack Closure Evaluation under Mixed-mode loading (혼합모드 하중 하에서 균열닫힘 평가에 대한 K$_{op}$와 U의 결정과 적용)

  • Song Samhong;Seo Kijeong;Lee Jeongmoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.178-185
    • /
    • 2005
  • Crack tip displacement is originated by tensile stress component, s and shear stress component, t on pure Mode I and pure Mode II. The crack tip displacement(CTD) depends on combined types of different two stress components under mixed-mode loading conditions (MMLC). Thus, the analysis of crack tip displacement must be CTD vector, dv which is composition of ds and dt under MMLC. In this paper, various effects of MMLC on the crack closure are studied experimentally. The crack closure magnitude is calculated from the information of crack tip displacement under MMLC. This information has been obtained from the high resolution optical microscope in direct observations of crack displacement behavior at the crack tip. Observed crack tip displacement is analyzed by using CTD vector to determine crack opening load. The various effects of MMLC on the crack closure are explained using crack opening ratio with crack length and mode mixture. The effective stress intensity factor considering crack closure is also discussed.

Studies on Criterion for Mixed Mode Fracture in Glulam (집성재(集成材)의 혼합모드 하중시 파괴(破壞) 기준(基準)에 관한 연구(硏究))

  • Lee, Jee-Yong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.15-22
    • /
    • 1993
  • This study was carried out to investigate the fracture criterion of glulam. The mixed mode fracture of glulam was investigated by means of single edge notched specimens with various crack inclination in the longitudinal-radial plane. While fracture of wood is not completely understood, the study on linear-elastic fracture mechanics is a rational and valuable tool for studying the strength behavior of glulam. The results are summarized as follows : 1. Glue line has no effect on fracture strength. 2. There is a definite interaction between fracture toughness $K_I$ and $K_{II}$ during the mixed mode fracture of glulam. Several criterions for mixed mode failure were compared. The criterion was expressed in the following form: $(\frac{K_I}{K_{IC}})^2+(\frac{K_{II}}{K_{IIC}})^2=1$ 3. As crack inclination increases, $K_{IC}$ value and $K_{IIC}$ value decreases. The equations relating crack angle to $K_{IC}$ and $K_{IIC}$, respectively, were obtained as follows; $K_{IC}$ = -77.42${\gamma}$+153.72 ($R^2$ = 0.78) $K_{IIC}$ = -9.17${\gamma}$+34.90 ($R^2$ = 0.48)

  • PDF

Determination of S.I.F. for Mixed Mode Crack and Development of Accuracy (혼합모드 균열의 응력확대계수 해석과 정도 개선에 대한 고찰)

  • Bae, Won-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.355-361
    • /
    • 2004
  • The finite element method were used to determine the stress intensity factor of cracked plate. The stress method, displacement method and J Integral are most popular finte element method. ANSYS proposed another a kind of displacement method. In this paper, it was examined that the accuracy and utility of the ANSYS method could believable to determine the stress intensity factors of centered inclined crack. Generally, inclined crack has two portion of stress intensity factors, tensile mode F1 and shear mode F2. For the purpose of increasing the accuracy of stress intensity factors, examined the effect of the numbers of nodes and elements, crack tip element size and number of partition of the crack tip vicinity. It was found that the method proposed by ANSYS is useful and has high accuracy. Accuracy of calculated stress intensity factors was increased by increase of the number of nodes and elements, and at the small size of crack tip elements can get more highly accuracy.

  • PDF

Toughness and Crack Propagation Behavior of The Interfacial Crack in Composite Materials (복합재료내의 계면균열의 인성과 균열진전 거동)

  • Choi, Byung-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.291-298
    • /
    • 2003
  • Interfacial crack problems between fiber and matrix in composite materials are discussed. A series of interfacial crack initiation and propagation experiments are conducted using the biaxial loading device for various mode-mixes. Normal crack opening displacement (NCOD) is measured near crack front by a crack opening interferometry and used for extracting fracture parameters. From mixed mode interfacial crack initiation experiments, large increase in toughness with shear components is observed. Initial velocity of crack propagation is very dependent upon the mode-mixes. It increased with positive mode-mix due to the increase of stress singularities ahead of crack front and decreased with negative mode-mix resulting from the increase of the degree of compressive stress behind the crack front. Crack propagation was less accelerated with positive mode-mix than the negative mode-mix.

  • PDF

MIXED-MODE CRACK PROPAGATION BY MOVABLE CELLULAR AUTOMATA METHOD

  • Pak, Mik-Hail;Lee, Choon-Yeol;Chai, Young-Suck
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1754-1759
    • /
    • 2007
  • Propagation of a mixed-mode crack in Soda-Lime silica glass using Movable Cellular Automata (MCA) method is demonstrated in this study. In MCA method, special fracture criterion is used to describe the process of crack initiation and propagation. Comparison between MCA and other crack initiation criteria results are made. The crack resistance curves and bifurcation angles under different loading angles are found. In comparisons with results of maximum circumferential tensile stress criterion, MCA result showed the sufficient agreement.

  • PDF

Fatigue Crack Growth Behavior for Rail Steel under Mixed Mode Variable Amplitude Loading (혼합모드 변동하중하에서 레일강의 피로균열 진전거동)

  • Sohn, Kyoung-Ju;Seo, Young-Bum;Kim, Chul-Su;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.261-266
    • /
    • 2003
  • The growth behavior of the transverse crack, which was one of the most dangerous damages of rail defects, was investigated under mode I and mixed mode loading in rail steel. In the case of variable amplitude loading, the fatigue crack growth behavior was discussed using characteristic stress intensity factor ranges ${\Delta}_{rms}$. In addition, characteristic comparative stress intensity factor ranges ${\Delta}_{V,rms}$ was proposed to evaluate the quantitative effects of the variable amplitude under mixed mode loading. As a result, crack growth rate under variable amplitude loading was faster than that under constant amplitude loading.

  • PDF